Implement local OCR and batch processing CLI flag
Implemented optical character recognition (OCR) in the image_to_anki function to vastly enhance performance. Additionally, allowed batch processing of images via explicitly specified batch size in command-line arguments
This commit is contained in:
		| @ -1,6 +1,7 @@ | ||||
| import base64 | ||||
| from typing import Any | ||||
| from typing import Any, Optional | ||||
|  | ||||
| import pytesseract | ||||
| import requests | ||||
| from PIL import Image | ||||
| from io import BytesIO | ||||
| @ -50,8 +51,18 @@ def crop_image_to_left_side(image: Image, crop_width) -> Image: | ||||
| # Resize the image and get base64 string | ||||
| # resized_image = resize_image(image_path, 1024, 512) | ||||
|  | ||||
| def image_to_anki(image_paths: str | list[str]) -> tuple[str | None, Any]: | ||||
|  | ||||
| # Function to perform OCR | ||||
| def ocr(image: Image, lang: Optional[str] = 'eng') -> str: | ||||
|     text = pytesseract.image_to_string(image, lang=lang) | ||||
|     return text | ||||
|  | ||||
|  | ||||
| def image_to_anki(image_paths: str | list[str], do_ocr: bool = False, lang: Optional[str] = None) -> tuple[ | ||||
|     str | None, Any]: | ||||
|     images = [] | ||||
|     ocr_results = [] | ||||
|  | ||||
|     if isinstance(image_paths, str): | ||||
|         image_paths = [image_paths] | ||||
|     for image_path in image_paths: | ||||
| @ -62,11 +73,41 @@ def image_to_anki(image_paths: str | list[str]) -> tuple[str | None, Any]: | ||||
|         # exit(1) | ||||
|         base64_image = encode_image(cropped_image) | ||||
|         images.append(base64_image) | ||||
|         if do_ocr: | ||||
|             original_image = Image.open(image_path) | ||||
|             print("doing local ocr...", end='') | ||||
|             ocr_text = ocr(original_image, lang) | ||||
|             print(f" done. local ocr resulted in {len(ocr_text)} characters.") | ||||
|             # print(ocr_text)  # or save it somewhere, or add it to your payload for further processing | ||||
|             ocr_results.append(ocr_text) | ||||
|     # print(resized_image.size) | ||||
|  | ||||
|  | ||||
|     # exit(1) | ||||
|  | ||||
|     # generate image payload | ||||
|  | ||||
|     image_msgs = [] | ||||
|  | ||||
|     for i, base64_image in enumerate(images): | ||||
|         image_payload = { | ||||
|             "type": "image_url", | ||||
|             "image_url": { | ||||
|                 "url": f"data:image/jpeg;base64,{base64_image}", | ||||
|                 "detail": "high" | ||||
|             } | ||||
|         } | ||||
|         if do_ocr: | ||||
|             ocr_payload = { | ||||
|                 "type": "text", | ||||
|                 "text": "Here are OCR results for the following page. These might be flawed. Use them to improve your " | ||||
|                         "performance:\n " + | ||||
|                         ocr_results[i] | ||||
|             } | ||||
|  | ||||
|             image_msgs.append(ocr_payload) | ||||
|  | ||||
|         image_msgs.append(image_payload) | ||||
|  | ||||
|     headers = { | ||||
|         "Content-Type": "application/json", | ||||
|         "Authorization": f"Bearer {api_key}" | ||||
| @ -97,18 +138,11 @@ def image_to_anki(image_paths: str | list[str]) -> tuple[str | None, Any]: | ||||
|                                #         "url": f"data:image/jpeg;base64,{base64_image}" | ||||
|                                #     } | ||||
|                                # } | ||||
|                 ] + [{ | ||||
|                     "type": "image_url", | ||||
|                     "image_url": { | ||||
|                         "url": f"data:image/jpeg;base64,{base64_image}", | ||||
|                         "detail": "high" | ||||
|                     } | ||||
|                 } | ||||
|                     for base64_image in images] | ||||
|                            ] + image_msgs | ||||
|             } | ||||
|         ], | ||||
|         "max_tokens": 600 * len(images),  # in general, around 350 tokens per page, so around double to be safe | ||||
|         "temperature": 0.0, | ||||
|         "temperature": 0.2, | ||||
|     } | ||||
|  | ||||
|     response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload) | ||||
| @ -133,11 +167,12 @@ def test(): | ||||
|     # image_path = 'tmp.jpg' | ||||
|  | ||||
|     image_path = [ | ||||
|         './.img/dict.pdf_7.png', | ||||
|         './.img/dict.pdf_8.png', | ||||
|         # './.img/dict.pdf_7.png', | ||||
|         # './.img/dict.pdf_8.png', | ||||
|         './.img/dict.pdf_103.png', | ||||
|     ] | ||||
|  | ||||
|     text, meta = image_to_anki(image_path) | ||||
|     text, meta = image_to_anki(image_path, do_ocr=False, lang='eng+chi_sim') | ||||
|  | ||||
|     print(text) | ||||
|  | ||||
| @ -148,10 +183,9 @@ def test(): | ||||
|     print( | ||||
|         f'approx. cost: 0.0075$ per picture, {usage["prompt_tokens"] * 0.01 / 1000}$ for prompt tokens and {usage["completion_tokens"] * 0.01 / 1000}$ for completion tokens') | ||||
|  | ||||
|     cost_this = usage["prompt_tokens"] * 0.01 / 1000 + usage["completion_tokens"] * 0.01 / 1000 + 0.0075 | ||||
|     cost_this = usage["prompt_tokens"] * 0.01 / 1000 + usage["completion_tokens"] * 0.03 / 1000 # + 0.0075 | ||||
|     print(f'this page: {cost_this}$') | ||||
|  | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|     test() | ||||
|  | ||||
							
								
								
									
										11
									
								
								main.py
									
									
									
									
									
								
							
							
						
						
									
										11
									
								
								main.py
									
									
									
									
									
								
							| @ -18,6 +18,8 @@ def main(): | ||||
|     parser.add_argument('--pages', type=str, required=True, help='Specify pages to parse in format <num>-<num>') | ||||
|     parser.add_argument('--output-file', type=str, default='out.md', help='Specify output file') | ||||
|     parser.add_argument('--images-path', type=str, default='./.img/', help='Specify output file') | ||||
|     parser.add_argument('--ocr', type=str, default=None, help='If present, send ocr=true to the image_to_anki method, and give the string value to the lang parameter') | ||||
|     parser.add_argument('--batch-size', type=int, default=3, help='Decide how many pages are processed in parallel') | ||||
|     parser.add_argument('pdf_file', type=str, help='Specify PDF file name') | ||||
|  | ||||
|     args = parser.parse_args() | ||||
| @ -62,11 +64,12 @@ def main(): | ||||
|  | ||||
|     break_outer = False | ||||
|  | ||||
|     for i in range(len(paths) // IMGS_PER_REQUEST + 1): | ||||
|     for i in range(len(paths) // args.batch_size + 1):  # the batch size argument is used here | ||||
|         # print(i) | ||||
|  | ||||
|         # collect images | ||||
|         while True: | ||||
|             to_process = paths[i * IMGS_PER_REQUEST:i * IMGS_PER_REQUEST + IMGS_PER_REQUEST] | ||||
|             to_process = paths[i * args.batch_size:i * args.batch_size + args.batch_size]  # the batch size argument is used here | ||||
|             # print(to_process) | ||||
|             if len(to_process) == 0: | ||||
|                 # skip if remaining list is empty (e.g. if 4 pages at package size 2) | ||||
| @ -74,7 +77,9 @@ def main(): | ||||
|  | ||||
|             print(f'processing {len(to_process)} image{"s" if len(to_process) != 1 else ""}') | ||||
|  | ||||
|             cards, meta = dict_to_anki.image_to_anki(to_process) | ||||
|             ocr = True if args.ocr else False  # set OCR to True if --ocr parameter is present | ||||
|  | ||||
|             cards, meta = dict_to_anki.image_to_anki(to_process, do_ocr=ocr, lang=args.ocr) | ||||
|  | ||||
|             if not cards: | ||||
|                 print("Error processing! Response: " + meta) | ||||
|  | ||||
							
								
								
									
										28
									
								
								poetry.lock
									
									
									
										generated
									
									
									
								
							
							
						
						
									
										28
									
								
								poetry.lock
									
									
									
										generated
									
									
									
								
							| @ -269,6 +269,17 @@ typing-extensions = ">=4.7,<5" | ||||
| [package.extras] | ||||
| datalib = ["numpy (>=1)", "pandas (>=1.2.3)", "pandas-stubs (>=1.1.0.11)"] | ||||
|  | ||||
| [[package]] | ||||
| name = "packaging" | ||||
| version = "23.2" | ||||
| description = "Core utilities for Python packages" | ||||
| optional = false | ||||
| python-versions = ">=3.7" | ||||
| files = [ | ||||
|     {file = "packaging-23.2-py3-none-any.whl", hash = "sha256:8c491190033a9af7e1d931d0b5dacc2ef47509b34dd0de67ed209b5203fc88c7"}, | ||||
|     {file = "packaging-23.2.tar.gz", hash = "sha256:048fb0e9405036518eaaf48a55953c750c11e1a1b68e0dd1a9d62ed0c092cfc5"}, | ||||
| ] | ||||
|  | ||||
| [[package]] | ||||
| name = "pdf2image" | ||||
| version = "1.17.0" | ||||
| @ -478,6 +489,21 @@ files = [ | ||||
| [package.dependencies] | ||||
| typing-extensions = ">=4.6.0,<4.7.0 || >4.7.0" | ||||
|  | ||||
| [[package]] | ||||
| name = "pytesseract" | ||||
| version = "0.3.10" | ||||
| description = "Python-tesseract is a python wrapper for Google's Tesseract-OCR" | ||||
| optional = false | ||||
| python-versions = ">=3.7" | ||||
| files = [ | ||||
|     {file = "pytesseract-0.3.10-py3-none-any.whl", hash = "sha256:8f22cc98f765bf13517ead0c70effedb46c153540d25783e04014f28b55a5fc6"}, | ||||
|     {file = "pytesseract-0.3.10.tar.gz", hash = "sha256:f1c3a8b0f07fd01a1085d451f5b8315be6eec1d5577a6796d46dc7a62bd4120f"}, | ||||
| ] | ||||
|  | ||||
| [package.dependencies] | ||||
| packaging = ">=21.3" | ||||
| Pillow = ">=8.0.0" | ||||
|  | ||||
| [[package]] | ||||
| name = "requests" | ||||
| version = "2.31.0" | ||||
| @ -561,4 +587,4 @@ zstd = ["zstandard (>=0.18.0)"] | ||||
| [metadata] | ||||
| lock-version = "2.0" | ||||
| python-versions = "^3.10" | ||||
| content-hash = "1df31140161c62d430257e30b1ebbff75524b5614888dfc7809f90d5f09a5737" | ||||
| content-hash = "07e8002d23153d51441fa4c4a70af0d6022d127f2c6c9c900cb194741e9bbe6c" | ||||
|  | ||||
| @ -12,6 +12,7 @@ openai = "^1.10.0" | ||||
| requests = "^2.31.0" | ||||
| pillow = "^10.2.0" | ||||
| pdf2image = "^1.17.0" | ||||
| pytesseract = "^0.3.10" | ||||
|  | ||||
|  | ||||
| [build-system] | ||||
|  | ||||
		Reference in New Issue
	
	Block a user