58 lines
1.5 KiB
R
58 lines
1.5 KiB
R
|
# Creating a data frame
|
||
|
employee_data <- data.frame(
|
||
|
EmployeeID = c(1, 2, 3, 4),
|
||
|
Name = c("Alice", "Bob", "Charlie", "David"),
|
||
|
Age = c(28, 34, 29, 40),
|
||
|
Department = c("HR", "IT", "Marketing", "Finance"),
|
||
|
stringsAsFactors = FALSE
|
||
|
)
|
||
|
print("Original Data Frame:")
|
||
|
print(employee_data)
|
||
|
|
||
|
# Accessing data frame columns
|
||
|
print("Names Column:")
|
||
|
print(employee_data$Name)
|
||
|
|
||
|
# Accessing rows and columns using indices
|
||
|
print("Second Row, Third Column:")
|
||
|
print(employee_data[2, 3])
|
||
|
|
||
|
# Adding a new column
|
||
|
employee_data$Salary <- c(50000, 55000, 49000, 53000)
|
||
|
print("Data Frame with Salary Column:")
|
||
|
print(employee_data)
|
||
|
|
||
|
# Removing a column
|
||
|
employee_data$Age <- NULL
|
||
|
print("Data Frame after Removing Age Column:")
|
||
|
print(employee_data)
|
||
|
|
||
|
# Filtering rows
|
||
|
it_department <- subset(employee_data, Department == "IT")
|
||
|
print("Employees in IT Department:")
|
||
|
print(it_department)
|
||
|
|
||
|
# Summarizing data
|
||
|
average_salary <- mean(employee_data$Salary)
|
||
|
print(paste("Average Salary:", average_salary))
|
||
|
|
||
|
# Using dplyr for more advanced data frame manipulation
|
||
|
# Uncomment the next lines if dplyr is not installed
|
||
|
# install.packages("dplyr")
|
||
|
library(dplyr)
|
||
|
|
||
|
# Selecting specific columns with dplyr
|
||
|
selected_columns <- select(employee_data, Name, Salary)
|
||
|
print("Selected Columns:")
|
||
|
print(selected_columns)
|
||
|
|
||
|
# Filtering with dplyr
|
||
|
high_earners <- filter(employee_data, Salary > 50000)
|
||
|
print("High Earners:")
|
||
|
print(high_earners)
|
||
|
|
||
|
# Arranging rows by a column
|
||
|
sorted_employees <- arrange(employee_data, desc(Salary))
|
||
|
print("Employees Sorted by Salary:")
|
||
|
print(sorted_employees)
|