Compare commits
No commits in common. "a5ccd8759cd2b52af94f97cbc7cbf26be44ef1d6" and "25f0531dcd1ebd2633d2d22e7631d5f2ae0f8431" have entirely different histories.
a5ccd8759c
...
25f0531dcd
8
.gitignore
vendored
8
.gitignore
vendored
@ -1,4 +1,4 @@
|
||||
**/.Rproj.user
|
||||
**/.Rhistory
|
||||
**/.RData
|
||||
**/.Ruserdata
|
||||
.Rproj.user
|
||||
.Rhistory
|
||||
.RData
|
||||
.Ruserdata
|
||||
|
BIN
w1/README.pdf
BIN
w1/README.pdf
Binary file not shown.
@ -1,89 +0,0 @@
|
||||
# Comparison between C-implemented and R-implemented dual-loop matrix summing function performance
|
||||
|
||||
## Running
|
||||
|
||||
To run this project, run the following commands:
|
||||
|
||||
```bash
|
||||
# matrix test
|
||||
Rscript mat_tests.R
|
||||
```
|
||||
|
||||
### Building and running
|
||||
|
||||
If you edit the C code, to recompile run:
|
||||
|
||||
```bash
|
||||
bash make_c.sh
|
||||
```
|
||||
|
||||
### View Evaluation
|
||||
|
||||
To install packages necessary for this .rmd document, run:
|
||||
|
||||
```bash
|
||||
Rscript install_libs.R
|
||||
```
|
||||
|
||||
## Evaluation
|
||||
The experiment shows the performance comparison between the R-implemented and C-implemented matrix summing functions
|
||||
for different matrix sizes. As the matrix size increases, the C-implemented function demonstrates significantly
|
||||
better performance compared to the R-implemented function.
|
||||
Surprisingly, the speedup remains fairly constant in relative terms, stabilizing at about 4x
|
||||
|
||||
|
||||
|
||||
|
||||
> Note: Evaluation script run on an AMD Ryzen 9 7950X3D cpu with enough RAM for all matrix sizes
|
||||
|
||||
|
||||
| Matrix size | sum1 run duration (secs) | sum2 run duration (secs) |
|
||||
|-------------|---------------------------|---------------------------|
|
||||
| 5x5 | 7.152557e-06 | 7.867813e-06 |
|
||||
| 10x10 | 9.775162e-06 | 5.00679e-06 |
|
||||
| 50x50 | 9.346008e-05 | 8.106232e-06 |
|
||||
| 100x100 | 0.0003376007 | 1.955032e-05 |
|
||||
| 500x500 | 0.007472992 | 0.001415014 |
|
||||
| 1000x1000 | 0.03007007 | 0.005748034 |
|
||||
| 5000x5000 | 0.6559205 | 0.1854615 |
|
||||
| 10000x10000 | 2.692389 | 0.6747584 |
|
||||
| 20000x20000 | 10.67763 | 2.615553 |
|
||||
| 30000x30000 | 24.33534 | 5.987761 |
|
||||
|
||||
```{r diagram}
|
||||
library(ggplot2)
|
||||
library(dplyr)
|
||||
library(tidyr)
|
||||
|
||||
# prepare data
|
||||
data <- tribble(
|
||||
~Matrix.size, ~R.sum, ~C.sum,
|
||||
"5", 7.152557e-06, 7.867813e-06,
|
||||
"10", 9.775162e-06, 5.00679e-06,
|
||||
"50", 9.346008e-05, 8.106232e-06,
|
||||
"100", 0.0003376007, 1.955032e-05,
|
||||
"500", 0.007472992, 0.001415014,
|
||||
"1000", 0.03007007, 0.005748034,
|
||||
"5000", 0.6559205, 0.1854615,
|
||||
"10000", 2.692389, 0.6747584,
|
||||
"20000", 10.67763, 2.615553,
|
||||
"30000", 24.33534, 5.987761
|
||||
)
|
||||
|
||||
# Convert Matrix.size to factor with desired order
|
||||
data$Matrix.size <- factor(data$Matrix.size, levels = data$Matrix.size)
|
||||
|
||||
# rearrange data
|
||||
data_long <- data %>%
|
||||
pivot_longer(cols = c(R.sum, C.sum),
|
||||
names_to = "Method",
|
||||
values_to = "Duration")
|
||||
|
||||
# Create the plot
|
||||
ggplot(data_long, aes(x = Matrix.size, y = Duration, color = Method)) +
|
||||
geom_point() +
|
||||
scale_y_log10() +
|
||||
labs(x = "Matrix Size", y = "Duration (seconds)", color = "Method") +
|
||||
ggtitle("Calculation Time per (square) matrix size") +
|
||||
theme_minimal()
|
||||
```
|
@ -1,4 +0,0 @@
|
||||
install.packages("rmarkdown")
|
||||
install.packages("ggplot2")
|
||||
install.packages("dplyr")
|
||||
install.packages("tidyr")
|
@ -1 +0,0 @@
|
||||
R CMD SHLIB mat.c
|
19
w1/mat.R
19
w1/mat.R
@ -1,19 +0,0 @@
|
||||
dyn.load("mat.so")
|
||||
|
||||
|
||||
sum1 <- function(matrix) {
|
||||
result <- 0
|
||||
for (i in seq_len(nrow(matrix))) {
|
||||
for (j in seq_len(ncol(matrix))) {
|
||||
result <- result + matrix[i, j]
|
||||
}
|
||||
}
|
||||
return(result)
|
||||
}
|
||||
|
||||
sum2 <- function(matrix) {
|
||||
nrow <- nrow(matrix)
|
||||
ncol <- ncol(matrix)
|
||||
result <- .C("c_sum_matrix", as.double(matrix), as.integer(nrow), as.integer(ncol), result = double(1))$result
|
||||
return(result)
|
||||
}
|
12
w1/mat.c
12
w1/mat.c
@ -1,12 +0,0 @@
|
||||
#include <R.h>
|
||||
#include <Rinternals.h>
|
||||
|
||||
void c_sum_matrix(double *matrix, int *nrow, int *ncol, double *result) {
|
||||
int i, j;
|
||||
*result = 0.0;
|
||||
for (i = 0; i < *nrow; i++) {
|
||||
for (j = 0; j < *ncol; j++) {
|
||||
*result += matrix[i * (*ncol) + j];
|
||||
}
|
||||
}
|
||||
}
|
@ -1,32 +0,0 @@
|
||||
source("mat.R")
|
||||
|
||||
time <- function(f) {
|
||||
start_time <- Sys.time()
|
||||
val <- f()
|
||||
end_time <- Sys.time()
|
||||
print(end_time - start_time)
|
||||
return(val)
|
||||
}
|
||||
|
||||
sizes <- c(5, 10, 50, 100, 500, 1000, 5000, 10000, 20000, 30000)
|
||||
# sizes <- c(5, 10, 50, 100, 500, 1000, 5000, 10000)
|
||||
|
||||
# warm up
|
||||
|
||||
for (size in 30:50) {
|
||||
m <- matrix(runif(size * size), nrow = size, ncol = size)
|
||||
sum1(m)
|
||||
sum2(m)
|
||||
}
|
||||
|
||||
for (size in sizes) {
|
||||
m <- matrix(runif(size * size), nrow = size, ncol = size)
|
||||
|
||||
cat(sprintf("Matrix size: %dx%d\n", size, size))
|
||||
cat("sum1 run duration: ")
|
||||
time(function() sum1(m))
|
||||
cat("sum2 run duration: ")
|
||||
time(function() sum2(m))
|
||||
cat("\n")
|
||||
}
|
||||
|
Binary file not shown.
Loading…
Reference in New Issue
Block a user