import threading from faster_whisper import WhisperModel import faster_whisper from typing import Literal, Iterable, Tuple _model: WhisperModel | None = None ModelSize = Literal["tiny", "base", "small", "medium", "large-v1", "large-v2"] Device = Literal["cuda", "cpu", "auto"] ComputeType = Literal["8bit", "16bit", "32bit"] def set_model(size: ModelSize, device: Device): #, compute_type: ComputeType): ''' compute = None if compute_type == '8bit': if device == 'cuda' or device == 'auto': compute = 'int8_float16' else: compute = 'int8' elif compute_type == '16bit': if device == 'cuda' or device == 'auto': compute = 'int8' else: raise Exception("Cannot do 16 bit computing on CPU") elif compute_type == '32bit': compute = 'float' else: raise Exception(f"Invalid Compute / Device configuration (device {device} with {compute_type})") ''' global _model _model = WhisperModel(size, device=device) def unload_model(): if not is_model_loaded(): return global _model _model = None # TODO: check if this works def is_model_loaded() -> bool: global _model return _model is not None def transcribe_from_file(mp3_path: str) -> Tuple[Iterable[faster_whisper.transcribe.Segment], faster_whisper.transcribe.TranscriptionInfo] | None: """ Transcribe audio from an MP3 file. Note that this can - and will - crash if you don't catch exceptions. If the model isn't loaded yet, this will return None. Otherwise, it will return the raw transcription from `faster-whisper`. """ if not is_model_loaded(): return None global _model segments, info = _model.transcribe(mp3_path, beam_size=5) # transcribe, and throw all exceptions to application to handle return segments, info