Initial Release

This commit is contained in:
graham sanderson
2021-01-20 10:44:27 -06:00
commit 26653ea81e
404 changed files with 135614 additions and 0 deletions

View File

@ -0,0 +1,17 @@
if (NOT TARGET pico_multicore)
add_library(pico_multicore INTERFACE)
target_sources(pico_multicore INTERFACE
${CMAKE_CURRENT_LIST_DIR}/multicore.c)
target_include_directories(pico_multicore INTERFACE ${CMAKE_CURRENT_LIST_DIR}/include)
target_compile_definitions(pico_multicore INTERFACE
PICO_MULTICORE=1
)
target_link_libraries(pico_multicore INTERFACE pico_sync)
endif()

View File

@ -0,0 +1,173 @@
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _PICO_MULTICORE_H
#define _PICO_MULTICORE_H
#include "pico/types.h"
#include "pico/sync.h"
#ifdef __cplusplus
extern "C" {
#endif
/** \file multicore.h
* \defgroup pico_multicore pico_multicore
* Adds support for running code on the second processor core (core1)
*
* \subsection multicore_example Example
* \addtogroup pico_multicore
* \include multicore.c
*/
// PICO_CONFIG: PICO_CORE1_STACK_SIZE, Stack size for core 1, min=0x100, max=0x10000, default=PICO_STACK_SIZE/0x800, group=pico_multicore
#ifndef PICO_CORE1_STACK_SIZE
#ifdef PICO_STACK_SIZE
#define PICO_CORE1_STACK_SIZE PICO_STACK_SIZE
#else
#define PICO_CORE1_STACK_SIZE 0x800
#endif
#endif
/*! \brief Reset Core 1
* \ingroup pico_multicore
*
*/
void multicore_reset_core1();
/*! \brief Run code on core 1
* \ingroup pico_multicore
*
* Reset core1 and enter the given function on core 1 using the default core 1 stack (below core 0 stack)
*
* \param entry Function entry point, this function should not return.
*/
void multicore_launch_core1(void (*entry)(void));
/*! \brief Launch code on core 1 with stack
* \ingroup pico_multicore
*
* Reset core1 and enter the given function on core 1 using the passed stack for core 1
*/
void multicore_launch_core1_with_stack(void (*entry)(void), uint32_t *stack_bottom, size_t stack_size_bytes);
/*! \brief Send core 1 to sleep.
* \ingroup pico_multicore
*
*/
void multicore_sleep_core1();
/*! \brief Launch code on core 1 with no stack protection
* \ingroup pico_multicore
*
* Reset core1 and enter the given function using the passed sp as the initial stack pointer.
* This is a bare bones functions that does not provide a stack guard even if USE_STACK_GUARDS is defined
*
*/
void multicore_launch_core1_raw(void (*entry)(void), uint32_t *sp, uint32_t vector_table);
/*!
* \defgroup multicore_fifo fifo
* \ingroup pico_multicore
* \brief Functions for inter-core FIFO
*
* The RP2040 contains two FIFOs for passing data, messages or ordered events between the two cores. Each FIFO is 32 bits
* wide, and 8 entries deep. One of the FIFOs can only be written by core 0, and read by core 1. The other can only be written
* by core 1, and read by core 0.
*/
/*! \brief Check the read FIFO to see if there is data waiting
* \ingroup multicore_fifo
*
* \return true if the FIFO has data in it, false otherwise
*/
static inline bool multicore_fifo_rvalid() {
return !!(sio_hw->fifo_st & SIO_FIFO_ST_VLD_BITS);
}
/*! \brief Check the FIFO to see if the write FIFO is full
* \ingroup multicore_fifo
*
* @return true if the FIFO is full, false otherwise
*/
static inline bool multicore_fifo_wready() {
return !!(sio_hw->fifo_st & SIO_FIFO_ST_RDY_BITS);
}
/*! \brief Push data on to the FIFO.
* \ingroup multicore_fifo
*
* This function will block until there is space for the data to be sent.
* Use multicore_fifo_wready() to check if it is possible to write to the
* FIFO if you don't want to block.
*
* \param data A 32 bit value to push on to the FIFO
*/
void multicore_fifo_push_blocking(uint32_t data);
bool multicore_fifo_push_timeout_us(uint32_t data, uint64_t timeout_us);
/*! \brief Pop data from the FIFO.
* \ingroup multicore_fifo
*
* This function will block until there is data ready to be read
* Use multicore_fifo_rvalid() to check if data is ready to be read if you don't
* want to block.
*
* \return 32 bit unsigned data from the FIFO.
*/
uint32_t multicore_fifo_pop_blocking();
bool multicore_fifo_pop_timeout_us(uint64_t timeout_us, uint32_t *out);
/*! \brief Flush any data in the outgoing FIFO
* \ingroup multicore_fifo
*
*/
static inline void multicore_fifo_drain() {
while (multicore_fifo_rvalid())
(void) sio_hw->fifo_rd;
}
/*! \brief Clear FIFO interrupt
* \ingroup multicore_fifo
*/
static inline void multicore_fifo_clear_irq() {
// Write any value to clear any interrupts
sio_hw->fifo_st = 0xff;
}
/*! \brief Get FIFO status
* \ingroup multicore_fifo
*
* \return The status as a bitfield
*
* Bit | Description
* ----|------------
* 3 | Sticky flag indicating the RX FIFO was read when empty. This read was ignored by the FIFO.
* 2 | Sticky flag indicating the TX FIFO was written when full. This write was ignored by the FIFO.
* 1 | Value is 1 if this cores TX FIFO is not full (i.e. if FIFO_WR is ready for more data)
* 0 | Value is 1 if this cores RX FIFO is not empty (i.e. if FIFO_RD is valid)
*/
static inline int32_t multicore_fifo_get_status() {
return sio_hw->fifo_st;
}
// call this from the lockout victim thread
void multicore_lockout_victim_init();
// start locking out the other core (it will be
bool multicore_lockout_start_timeout_us(uint64_t timeout_us);
void multicore_lockout_start_blocking();
bool multicore_lockout_end_timeout_us(uint64_t timeout_us);
void multicore_lockout_end_blocking();
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,262 @@
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include "pico/stdlib.h"
#include "pico/multicore.h"
#include "hardware/sync.h"
#include "hardware/irq.h"
#include "hardware/structs/scb.h"
#include "hardware/structs/sio.h"
#include "hardware/regs/psm.h"
#include "hardware/claim.h"
#if PICO_USE_STACK_GUARDS
#include "pico/runtime.h"
#endif
static inline void multicore_fifo_push_blocking_inline(uint32_t data) {
// We wait for the fifo to have some space
while (!multicore_fifo_wready())
tight_loop_contents();
sio_hw->fifo_wr = data;
// Fire off an event to the other core
__sev();
}
void multicore_fifo_push_blocking(uint32_t data) {
multicore_fifo_push_blocking_inline(data);
}
bool multicore_fifo_push_timeout_us(uint32_t data, uint64_t timeout_us) {
absolute_time_t end_time = make_timeout_time_us(timeout_us);
// We wait for the fifo to have some space
while (!multicore_fifo_wready()) {
tight_loop_contents();
if (time_reached(end_time)) return false;
}
sio_hw->fifo_wr = data;
// Fire off an event to the other core
__sev();
return true;
}
static inline uint32_t multicore_fifo_pop_blocking_inline() {
// If nothing there yet, we wait for an event first,
// to try and avoid too much busy waiting
while (!multicore_fifo_rvalid())
__wfe();
return sio_hw->fifo_rd;
}
uint32_t multicore_fifo_pop_blocking() {
return multicore_fifo_pop_blocking_inline();
}
bool multicore_fifo_pop_timeout_us(uint64_t timeout_us, uint32_t *out) {
absolute_time_t end_time = make_timeout_time_us(timeout_us);
// If nothing there yet, we wait for an event first,
// to try and avoid too much busy waiting
while (!multicore_fifo_rvalid()) {
__wfe();
if (time_reached(end_time)) return false;
}
*out = sio_hw->fifo_rd;
return true;
}
// Default stack for core1 ... if multicore_launch_core1 is not included then .stack1 section will be garbage collected
static uint32_t __attribute__((section(".stack1"))) core1_stack[PICO_CORE1_STACK_SIZE / sizeof(uint32_t)];
static void __attribute__ ((naked)) core1_trampoline() {
__asm("pop {r0, r1, pc}");
}
int core1_wrapper(int (*entry)(void), void *stack_base) {
#if PICO_USE_STACK_GUARDS
// install core1 stack guard
runtime_install_stack_guard(stack_base);
#endif
irq_init_priorities();
return (*entry)();
}
void multicore_reset_core1() {
// Use atomic aliases just in case core 1 is also manipulating some posm state
io_rw_32 *power_off = (io_rw_32 *) (PSM_BASE + PSM_FRCE_OFF_OFFSET);
io_rw_32 *power_off_set = hw_set_alias(power_off);
io_rw_32 *power_off_clr = hw_clear_alias(power_off);
// Hard-reset core 1.
// Reading back confirms the core 1 reset is in the correct state, but also
// forces APB IO bridges to fence on any internal store buffering
*power_off_set = PSM_FRCE_OFF_PROC1_BITS;
while (!(*power_off & PSM_FRCE_OFF_PROC1_BITS)) tight_loop_contents();
// Bring core 1 back out of reset. It will drain its own mailbox FIFO, then push
// a 0 to our mailbox to tell us it has done this.
*power_off_clr = PSM_FRCE_OFF_PROC1_BITS;
}
void multicore_sleep_core1() {
multicore_reset_core1();
// note we give core1 an invalid stack pointer, as it should not be used
// note also if we ge simply passed a function that returned immediately, we'd end up in core1_hang anyway
// however that would waste 2 bytes for that function (the horror!)
extern void core1_hang(); // in crt0.S
multicore_launch_core1_raw(core1_hang, (uint32_t *) -1, scb_hw->vtor);
}
void multicore_launch_core1_with_stack(void (*entry)(void), uint32_t *stack_bottom, size_t stack_size_bytes) {
assert(!(stack_size_bytes & 3u));
uint32_t *stack_ptr = stack_bottom + stack_size_bytes / sizeof(uint32_t);
// push 2 values onto top of stack for core1_trampoline
stack_ptr -= 3;
stack_ptr[0] = (uintptr_t) entry;
stack_ptr[1] = (uintptr_t) stack_bottom;
stack_ptr[2] = (uintptr_t) core1_wrapper;
multicore_launch_core1_raw(core1_trampoline, stack_ptr, scb_hw->vtor);
}
void multicore_launch_core1(void (*entry)(void)) {
extern char __StackOneBottom;
uint32_t *stack_limit = (uint32_t *) &__StackOneBottom;
// hack to reference core1_stack although that pointer is wrong.... core1_stack should always be <= stack_limit, if not boom!
uint32_t *stack = core1_stack <= stack_limit ? stack_limit : (uint32_t *) -1;
multicore_launch_core1_with_stack(entry, stack, sizeof(core1_stack));
}
void multicore_launch_core1_raw(void (*entry)(void), uint32_t *sp, uint32_t vector_table) {
uint32_t cmd_sequence[] = {0, 0, 1, (uintptr_t) vector_table, (uintptr_t) sp, (uintptr_t) entry};
uint seq = 0;
do {
uint cmd = cmd_sequence[seq];
// we drain before sending a 0
if (!cmd) {
multicore_fifo_drain();
__sev(); // core 1 may be waiting for fifo space
}
multicore_fifo_push_blocking(cmd);
uint32_t response = multicore_fifo_pop_blocking();
// move to next state on correct response otherwise start over
seq = cmd == response ? seq + 1 : 0;
} while (seq < count_of(cmd_sequence));
}
#define LOCKOUT_MAGIC_START 0x73a8831e
#define LOCKOUT_MAGIC_END (LOCKOUT_MAGIC_START ^ -1)
static_assert(SIO_IRQ_PROC1 == SIO_IRQ_PROC0 + 1, "");
static mutex_t lockout_mutex;
static bool lockout_in_progress;
// note this method is in RAM because lockout is used when writing to flash
// it only makes inline calls
static void __isr __not_in_flash_func(multicore_lockout_handler)() {
multicore_fifo_clear_irq();
while (multicore_fifo_rvalid()) {
if (sio_hw->fifo_rd == LOCKOUT_MAGIC_START) {
uint32_t save = save_and_disable_interrupts();
multicore_fifo_push_blocking_inline(LOCKOUT_MAGIC_START);
while (multicore_fifo_pop_blocking_inline() != LOCKOUT_MAGIC_END) {
tight_loop_contents(); // not tight but endless potentially
}
restore_interrupts(save);
multicore_fifo_push_blocking_inline(LOCKOUT_MAGIC_END);
}
}
}
static void check_lockout_mutex_init() {
// use known available lock - we only need it briefly
uint32_t save = hw_claim_lock();
if (!mutex_is_initialzed(&lockout_mutex)) {
mutex_init(&lockout_mutex);
}
hw_claim_unlock(save);
}
void multicore_lockout_victim_init() {
check_lockout_mutex_init();
uint core_num = get_core_num();
irq_set_exclusive_handler(SIO_IRQ_PROC0 + core_num, multicore_lockout_handler);
irq_set_enabled(SIO_IRQ_PROC0 + core_num, true);
}
static bool multicore_lockout_handshake(uint32_t magic, absolute_time_t until) {
uint irq_num = SIO_IRQ_PROC0 + get_core_num();
bool enabled = irq_is_enabled(irq_num);
if (enabled) irq_set_enabled(irq_num, false);
bool rc = false;
do {
int64_t next_timeout_us = absolute_time_diff_us(get_absolute_time(), until);
if (next_timeout_us < 0) {
break;
}
multicore_fifo_push_timeout_us(magic, next_timeout_us);
next_timeout_us = absolute_time_diff_us(get_absolute_time(), until);
if (next_timeout_us < 0) {
break;
}
uint32_t word = 0;
if (!multicore_fifo_pop_timeout_us(next_timeout_us, &word)) {
break;
}
if (word == magic) {
rc = true;
}
} while (!rc);
if (enabled) irq_set_enabled(irq_num, true);
return rc;
}
static bool multicore_lockout_start_block_until(absolute_time_t until) {
check_lockout_mutex_init();
if (!mutex_enter_block_until(&lockout_mutex, until)) {
return false;
}
hard_assert(!lockout_in_progress);
bool rc = multicore_lockout_handshake(LOCKOUT_MAGIC_START, until);
lockout_in_progress = rc;
mutex_exit(&lockout_mutex);
return rc;
}
bool multicore_lockout_start_timeout_us(uint64_t timeout_us) {
return multicore_lockout_start_block_until(make_timeout_time_us(timeout_us));
}
void multicore_lockout_start_blocking() {
multicore_lockout_start_block_until(at_the_end_of_time);
}
static bool multicore_lockout_end_block_until(absolute_time_t until) {
assert(mutex_is_initialzed(&lockout_mutex));
if (!mutex_enter_block_until(&lockout_mutex, until)) {
return false;
}
assert(lockout_in_progress);
bool rc = multicore_lockout_handshake(LOCKOUT_MAGIC_END, until);
if (rc) {
lockout_in_progress = false;
}
mutex_exit(&lockout_mutex);
return rc;
}
bool multicore_lockout_end_timeout_us(uint64_t timeout_us) {
return multicore_lockout_end_block_until(make_timeout_time_us(timeout_us));
}
void multicore_lockout_end_blocking() {
multicore_lockout_end_block_until(at_the_end_of_time);
}