Fixup divider save_restore for floating point too; improve tests (#405)
- The divider state needs to be saved for __aeabi_ddiv, __aeabi_fdiv, __aeabi_dtan and __aeabi_ftan or they won't work in interrupts *(probably not used much youd hope), or on an RTOS context switch - Refactored code out for the integer and floating point cases - Improved the floating point 'tests' in passing to check more return values against GCC implementations - Added floating point usage to the IRQ nesting test case
This commit is contained in:
@ -0,0 +1,68 @@
|
||||
/*
|
||||
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
|
||||
*
|
||||
* SPDX-License-Identifier: BSD-3-Clause
|
||||
*/
|
||||
|
||||
#include "hardware/regs/addressmap.h"
|
||||
#include "hardware/regs/sio.h"
|
||||
|
||||
#if SIO_DIV_CSR_READY_LSB == 0
|
||||
.equ SIO_DIV_CSR_READY_SHIFT_FOR_CARRY, 1
|
||||
#else
|
||||
need to change SHIFT above
|
||||
#endif
|
||||
#if SIO_DIV_CSR_DIRTY_LSB == 1
|
||||
.equ SIO_DIV_CSR_DIRTY_SHIFT_FOR_CARRY, 2
|
||||
#else
|
||||
need to change SHIFT above
|
||||
#endif
|
||||
|
||||
// SIO_BASE ptr in r2; pushes r4-r7, lr to stack
|
||||
// requires that division started at least 2 cycles prior to the start of the macro
|
||||
.macro save_div_state_and_lr
|
||||
// originally we did this, however a) it uses r3, and b) the push takes 6 cycles, b)
|
||||
// any IRQ which uses the divider will necessarily put the data back, which will
|
||||
// immediately make it ready
|
||||
//
|
||||
// // ldr r3, [r2, #SIO_DIV_CSR_OFFSET]
|
||||
// // // wait for results as we can't save signed-ness of operation
|
||||
// // 1:
|
||||
// // lsrs r3, #SIO_DIV_CSR_READY_SHIFT_FOR_CARRY
|
||||
// // bcc 1b
|
||||
|
||||
// 6 cycles
|
||||
push {r4, r5, r6, r7, lr}
|
||||
// note we must read quotient last, and since it isn't the last reg, we'll not use ldmia!
|
||||
ldr r4, [r2, #SIO_DIV_UDIVIDEND_OFFSET]
|
||||
ldr r5, [r2, #SIO_DIV_UDIVISOR_OFFSET]
|
||||
ldr r7, [r2, #SIO_DIV_REMAINDER_OFFSET]
|
||||
ldr r6, [r2, #SIO_DIV_QUOTIENT_OFFSET]
|
||||
.endm
|
||||
|
||||
// restores divider state from r4-r7, then pops them and pc
|
||||
.macro restore_div_state_and_return
|
||||
// writing sdividend (r4), sdivisor (r5), quotient (r6), remainder (r7) in that order
|
||||
//
|
||||
// it is worth considering what happens if we are interrupted
|
||||
//
|
||||
// after writing r4: we are DIRTY and !READY
|
||||
// ... interruptor using div will complete based on incorrect inputs, but dividend at least will be
|
||||
// saved/restored correctly and we'll restore the rest ourselves
|
||||
// after writing r4, r5: we are DIRTY and !READY
|
||||
// ... interruptor using div will complete based on possibly wrongly signed inputs, but dividend, divisor
|
||||
// at least will be saved/restored correctly and and we'll restore the rest ourselves
|
||||
// after writing r4, r5, r6: we are DIRTY and READY
|
||||
// ... interruptor using div will dividend, divisor, quotient registers as is (what we just restored ourselves),
|
||||
// and we'll restore the remainder after the fact
|
||||
|
||||
// note we are not use STM not because it can be restarted due to interrupt which is harmless, more because this is 1 cycle IO space
|
||||
// and so 4 reads is cheaper (and we don't have to adjust r2)
|
||||
// note also, that we must restore via UDIVI* rather than SDIVI* to prevent the quotient/remainder being negated on read based
|
||||
// on the signs of the inputs
|
||||
str r4, [r2, #SIO_DIV_UDIVIDEND_OFFSET]
|
||||
str r5, [r2, #SIO_DIV_UDIVISOR_OFFSET]
|
||||
str r7, [r2, #SIO_DIV_REMAINDER_OFFSET]
|
||||
str r6, [r2, #SIO_DIV_QUOTIENT_OFFSET]
|
||||
pop {r4, r5, r6, r7, pc}
|
||||
.endm
|
Reference in New Issue
Block a user