/* * Copyright (c) 2020 Raspberry Pi (Trading) Ltd. * * SPDX-License-Identifier: BSD-3-Clause */ #ifndef _HARDWARE_PIO_H_ #define _HARDWARE_PIO_H_ #include "pico.h" #include "hardware/address_mapped.h" #include "hardware/structs/pio.h" #include "hardware/gpio.h" #include "hardware/regs/dreq.h" #include "hardware/pio_instructions.h" // PICO_CONFIG: PARAM_ASSERTIONS_ENABLED_PIO, Enable/disable assertions in the PIO module, type=bool, default=0, group=hardware_pio #ifndef PARAM_ASSERTIONS_ENABLED_PIO #define PARAM_ASSERTIONS_ENABLED_PIO 0 #endif /** \file hardware/pio.h * \defgroup hardware_pio hardware_pio * * Programmable I/O (PIO) API * * A programmable input/output block (PIO) is a versatile hardware interface which * can support a number of different IO standards. There are two PIO blocks in the RP2040 * * Each PIO is programmable in the same sense as a processor: the four state machines independently * execute short, sequential programs, to manipulate GPIOs and transfer data. Unlike a general * purpose processor, PIO state machines are highly specialised for IO, with a focus on determinism, * precise timing, and close integration with fixed-function hardware. Each state machine is equipped * with: * * Two 32-bit shift registers – either direction, any shift count * * Two 32-bit scratch registers * * 4×32 bit bus FIFO in each direction (TX/RX), reconfigurable as 8×32 in a single direction * * Fractional clock divider (16 integer, 8 fractional bits) * * Flexible GPIO mapping * * DMA interface, sustained throughput up to 1 word per clock from system DMA * * IRQ flag set/clear/status * * Full details of the PIO can be found in the RP2040 datasheet. */ #ifdef __cplusplus extern "C" { #endif static_assert(PIO_SM0_SHIFTCTRL_FJOIN_RX_LSB == PIO_SM0_SHIFTCTRL_FJOIN_TX_LSB + 1, ""); /** \brief FIFO join states * \ingroup hardware_pio */ enum pio_fifo_join { PIO_FIFO_JOIN_NONE = 0, PIO_FIFO_JOIN_TX = 1, PIO_FIFO_JOIN_RX = 2, }; enum pio_mov_status_type { STATUS_TX_LESSTHAN = 0, STATUS_RX_LESSTHAN = 1 }; typedef pio_hw_t *PIO; /** Identifier for the first (PIO 0) hardware PIO instance (for use in PIO functions). * * e.g. pio_gpio_init(pio0, 5) * * \ingroup hardware_pio * @{ */ #define pio0 pio0_hw /** @} */ /** Identifier for the second (PIO 1) hardware PIO instance (for use in PIO functions). * * e.g. pio_gpio_init(pio1, 5) * * \ingroup hardware_pio * @{ */ #define pio1 pio1_hw /** @} */ /** \brief PIO state machine configuration * \defgroup sm_config sm_config * \ingroup hardware_pio * * A PIO block needs to be configured, these functions provide helpers to set up configuration * structures. See \ref pio_sm_set_config * */ /** \brief PIO Configuration structure * \ingroup sm_config */ typedef struct { uint32_t clkdiv; uint32_t execctrl; uint32_t shiftctrl; uint32_t pinctrl; } pio_sm_config; static inline void check_sm_param(uint sm) { valid_params_if(PIO, sm < NUM_PIO_STATE_MACHINES); } /*! \brief Set the 'out' pins in a state machine configuration * \ingroup sm_config * * Can overlap with the 'in', 'set' and 'sideset' pins * * \param c Pointer to the configuration structure to modify * \param out_base 0-31 First pin to set as output * \param out_count 0-32 Number of pins to set. */ static inline void sm_config_set_out_pins(pio_sm_config *c, uint out_base, uint out_count) { assert(out_base < 32); assert(out_count <= 32); c->pinctrl = (c->pinctrl & ~(PIO_SM0_PINCTRL_OUT_BASE_BITS | PIO_SM0_PINCTRL_OUT_COUNT_BITS)) | (out_base << PIO_SM0_PINCTRL_OUT_BASE_LSB) | (out_count << PIO_SM0_PINCTRL_OUT_COUNT_LSB); } /*! \brief Set the 'set' pins in a state machine configuration * \ingroup sm_config * * Can overlap with the 'in', 'out' and 'sideset' pins * * \param c Pointer to the configuration structure to modify * \param set_base 0-31 First pin to set as * \param set_count 0-5 Number of pins to set. */ static inline void sm_config_set_set_pins(pio_sm_config *c, uint set_base, uint set_count) { assert(set_base < 32); assert(set_count <= 5); c->pinctrl = (c->pinctrl & ~(PIO_SM0_PINCTRL_SET_BASE_BITS | PIO_SM0_PINCTRL_SET_COUNT_BITS)) | (set_base << PIO_SM0_PINCTRL_SET_BASE_LSB) | (set_count << PIO_SM0_PINCTRL_SET_COUNT_LSB); } /*! \brief Set the 'in' pins in a state machine configuration * \ingroup sm_config * * Can overlap with the 'out', ''set' and 'sideset' pins * * \param c Pointer to the configuration structure to modify * \param in_base 0-31 First pin to use as input */ static inline void sm_config_set_in_pins(pio_sm_config *c, uint in_base) { assert(in_base < 32); c->pinctrl = (c->pinctrl & ~PIO_SM0_PINCTRL_IN_BASE_BITS) | (in_base << PIO_SM0_PINCTRL_IN_BASE_LSB); } /*! \brief Set the 'sideset' pins in a state machine configuration * \ingroup sm_config * * Can overlap with the 'in', 'out' and 'set' pins * * \param c Pointer to the configuration structure to modify * \param sideset_base 0-31 base pin for 'side set' */ static inline void sm_config_set_sideset_pins(pio_sm_config *c, uint sideset_base) { assert(sideset_base < 32); c->pinctrl = (c->pinctrl & ~PIO_SM0_PINCTRL_SIDESET_BASE_BITS) | (sideset_base << PIO_SM0_PINCTRL_SIDESET_BASE_LSB); } /*! \brief Set the 'sideset' options in a state machine configuration * \ingroup sm_config * * \param c Pointer to the configuration structure to modify * \param bit_count Number of bits to steal from delay field in the instruction for use of side set * \param optional True if the topmost side set bit is used as a flag for whether to apply side set on that instruction * \param pindirs True if the side set affects pin directions rather than values */ static inline void sm_config_set_sideset(pio_sm_config *c, uint bit_count, bool optional, bool pindirs) { assert(bit_count <= 32); c->pinctrl = (c->pinctrl & ~PIO_SM0_PINCTRL_SIDESET_COUNT_BITS) | (bit_count << PIO_SM0_PINCTRL_SIDESET_COUNT_LSB); c->execctrl = (c->execctrl & ~(PIO_SM0_EXECCTRL_SIDE_EN_BITS | PIO_SM0_EXECCTRL_SIDE_PINDIR_BITS)) | (!!optional << PIO_SM0_EXECCTRL_SIDE_EN_LSB) | (!!pindirs << PIO_SM0_EXECCTRL_SIDE_PINDIR_LSB); } /*! \brief Set the state machine clock divider (from a floating point value) in a state machine configuration * \ingroup sm_config * * The clock divider can slow the state machine's execution to some rate below * the system clock frequency, by enabling the state machine on some cycles * but not on others, in a regular pattern. This can be used to generate e.g. * a given UART baud rate. See the datasheet for further detail. * * \param c Pointer to the configuration structure to modify * \param div The fractional divisor to be set. 1 for full speed. An integer clock divisor of n * will cause the state machine to run 1 cycle in every n. * Note that for small n, the jitter introduced by a fractional divider (e.g. 2.5) may be unacceptable * although it will depend on the use case. */ static inline void sm_config_set_clkdiv(pio_sm_config *c, float div) { uint16_t div_int = (uint16_t) div; uint8_t div_frac = (uint8_t) ((div - div_int) * (1u << 8u)); c->clkdiv = (div_frac << PIO_SM0_CLKDIV_FRAC_LSB) | (div_int << PIO_SM0_CLKDIV_INT_LSB); } /*! \brief Set the state machine clock divider (from integer and fractional parts - 16:8) in a state machine configuration * \ingroup sm_config * * The clock divider can slow the state machine's execution to some rate below * the system clock frequency, by enabling the state machine on some cycles * but not on others, in a regular pattern. This can be used to generate e.g. * a given UART baud rate. See the datasheet for further detail. * * \param c Pointer to the configuration structure to modify * \param div_int Integer part of the divisor * \param div_frac Fractional part in 1/256ths * \sa sm_config_set_clkdiv */ static inline void sm_config_set_clkdiv_int_frac(pio_sm_config *c, uint16_t div_int, uint8_t div_frac) { c->clkdiv = (div_frac << PIO_SM0_CLKDIV_FRAC_LSB) | (div_int << PIO_SM0_CLKDIV_INT_LSB); } /*! \brief Set the wrap addresses in a state machine configuration * \ingroup sm_config * * \param c Pointer to the configuration structure to modify * \param wrap_target the instruction memory address to wrap to * \param wrap the instruction memory address after which to set the program counter to wrap_target * if the instruction does not itself update the program_counter */ static inline void sm_config_set_wrap(pio_sm_config *c, uint wrap_target, uint wrap) { assert(wrap < PIO_INSTRUCTION_COUNT); assert(wrap_target < PIO_INSTRUCTION_COUNT); c->execctrl = (c->execctrl & ~(PIO_SM0_EXECCTRL_WRAP_TOP_BITS | PIO_SM0_EXECCTRL_WRAP_BOTTOM_BITS)) | (wrap_target << PIO_SM0_EXECCTRL_WRAP_BOTTOM_LSB) | (wrap << PIO_SM0_EXECCTRL_WRAP_TOP_LSB); } /*! \brief Set the 'jmp' pin in a state machine configuration * \ingroup sm_config * * \param c Pointer to the configuration structure to modify * \param pin The raw GPIO pin number to use as the source for a `jmp pin` instruction */ static inline void sm_config_set_jmp_pin(pio_sm_config *c, uint pin) { assert(pin < 32); c->execctrl = (c->execctrl & ~PIO_SM0_EXECCTRL_JMP_PIN_BITS) | (pin << PIO_SM0_EXECCTRL_JMP_PIN_LSB); } /*! \brief Setup 'in' shifting parameters in a state machine configuration * \ingroup sm_config * * \param c Pointer to the configuration structure to modify * \param shift_right true to shift ISR to right, false to shift ISR to left * \param autopush whether autopush is enabled * \param push_threshold threshold in bits to shift in before auto/conditional re-pushing of the ISR */ static inline void sm_config_set_in_shift(pio_sm_config *c, bool shift_right, bool autopush, uint push_threshold) { valid_params_if(PIO, push_threshold <= 32); c->shiftctrl = (c->shiftctrl & ~(PIO_SM0_SHIFTCTRL_IN_SHIFTDIR_BITS | PIO_SM0_SHIFTCTRL_AUTOPUSH_BITS | PIO_SM0_SHIFTCTRL_PUSH_THRESH_BITS)) | (!!shift_right << PIO_SM0_SHIFTCTRL_IN_SHIFTDIR_LSB) | (!!autopush << PIO_SM0_SHIFTCTRL_AUTOPUSH_LSB) | ((push_threshold & 0x1fu) << PIO_SM0_SHIFTCTRL_PUSH_THRESH_LSB); } /*! \brief Setup 'out' shifting parameters in a state machine configuration * \ingroup sm_config * * \param c Pointer to the configuration structure to modify * \param shift_right true to shift OSR to right, false to shift OSR to left * \param autopull whether autopull is enabled * \param pull_threshold threshold in bits to shift out before auto/conditional re-pulling of the OSR */ static inline void sm_config_set_out_shift(pio_sm_config *c, bool shift_right, bool autopull, uint pull_threshold) { valid_params_if(PIO, pull_threshold <= 32); c->shiftctrl = (c->shiftctrl & ~(PIO_SM0_SHIFTCTRL_OUT_SHIFTDIR_BITS | PIO_SM0_SHIFTCTRL_AUTOPULL_BITS | PIO_SM0_SHIFTCTRL_PULL_THRESH_BITS)) | (!!shift_right << PIO_SM0_SHIFTCTRL_OUT_SHIFTDIR_LSB) | (!!autopull << PIO_SM0_SHIFTCTRL_AUTOPULL_LSB) | ((pull_threshold & 0x1fu) << PIO_SM0_SHIFTCTRL_PULL_THRESH_LSB); } /*! \brief Setup the FIFO joining in a state machine configuration * \ingroup sm_config * * \param c Pointer to the configuration structure to modify * \param join Specifies the join type. \see enum pio_fifo_join */ static inline void sm_config_set_fifo_join(pio_sm_config *c, enum pio_fifo_join join) { assert(join >= 0 && join <= 2); c->shiftctrl = (c->shiftctrl & ~(PIO_SM0_SHIFTCTRL_FJOIN_TX_BITS | PIO_SM0_SHIFTCTRL_FJOIN_RX_BITS)) | (join << PIO_SM0_SHIFTCTRL_FJOIN_TX_LSB); } /*! \brief Set special 'out' operations in a state machine configuration * \ingroup sm_config * * \param c Pointer to the configuration structure to modify * \param sticky to enable 'sticky' output (i.e. re-asserting most recent OUT/SET pin values on subsequent cycles) * \param has_enable_pin true to enable auxiliary OUT enable pin * \param enable_pin_index pin index for auxiliary OUT enable */ static inline void sm_config_set_out_special(pio_sm_config *c, bool sticky, bool has_enable_pin, int enable_pin_index) { c->execctrl = (c->execctrl & ~(PIO_SM0_EXECCTRL_OUT_STICKY_BITS | PIO_SM0_EXECCTRL_INLINE_OUT_EN_BITS | PIO_SM0_EXECCTRL_OUT_EN_SEL_BITS)) | (!!sticky << PIO_SM0_EXECCTRL_OUT_STICKY_LSB) | (!!has_enable_pin << PIO_SM0_EXECCTRL_INLINE_OUT_EN_LSB) | ((enable_pin_index << PIO_SM0_EXECCTRL_OUT_EN_SEL_LSB) & PIO_SM0_EXECCTRL_OUT_EN_SEL_BITS); } /*! \brief Set source for 'mov status' in a state machine configuration * \ingroup sm_config * * \param c Pointer to the configuration structure to modify * \param status_sel the status operation selector * \param status_n parameter for the mov status operation (currently a bit count) */ static inline void sm_config_set_mov_status(pio_sm_config *c, enum pio_mov_status_type status_sel, uint status_n) { c->execctrl = (c->execctrl & ~(PIO_SM0_EXECCTRL_STATUS_SEL_BITS | PIO_SM0_EXECCTRL_STATUS_N_BITS)) | ((status_sel << PIO_SM0_EXECCTRL_STATUS_SEL_LSB) & PIO_SM0_EXECCTRL_STATUS_SEL_BITS) | ((status_n << PIO_SM0_EXECCTRL_STATUS_N_LSB) & PIO_SM0_EXECCTRL_STATUS_N_BITS); } /*! \brief Get the default state machine configuration * \ingroup sm_config * * Setting | Default * --------|-------- * Out Pins | 32 starting at 0 * Set Pins | 0 starting at 0 * In Pins (base) | 0 * Side Set Pins (base) | 0 * Side Set | disabled * Wrap | wrap=31, wrap_to=0 * In Shift | shift_direction=right, autopush=false, push_thrshold=32 * Out Shift | shift_direction=right, autopull=false, pull_thrshold=32 * Jmp Pin | 0 * Out Special | sticky=false, has_enable_pin=false, enable_pin_index=0 * Mov Status | status_sel=STATUS_TX_LESSTHAN, n=0 * * \return the default state machine configuration which can then be modified. */ static inline pio_sm_config pio_get_default_sm_config(void) { pio_sm_config c = {0, 0, 0, 0}; sm_config_set_clkdiv_int_frac(&c, 1, 0); sm_config_set_wrap(&c, 0, 31); sm_config_set_in_shift(&c, true, false, 32); sm_config_set_out_shift(&c, true, false, 32); return c; } /*! \brief Apply a state machine configuration to a state machine * \ingroup hardware_pio * * \param pio Handle to PIO instance; either \ref pio0 or \ref pio1 * \param sm State machine index (0..3) * \param config the configuration to apply */ static inline void pio_sm_set_config(PIO pio, uint sm, const pio_sm_config *config) { check_sm_param(sm); pio->sm[sm].clkdiv = config->clkdiv; pio->sm[sm].execctrl = config->execctrl; pio->sm[sm].shiftctrl = config->shiftctrl; pio->sm[sm].pinctrl = config->pinctrl; } /*! \brief Return the instance number of a PIO instance * \ingroup hardware_pio * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \return the PIO instance number (either 0 or 1) */ static inline uint pio_get_index(PIO pio) { assert(pio == pio0 || pio == pio1); return pio == pio1 ? 1 : 0; } /*! \brief Setup the function select for a GPIO to use output from the given PIO instance * \ingroup hardware_pio * * PIO appears as an alternate function in the GPIO muxing, just like an SPI * or UART. This function configures that multiplexing to connect a given PIO * instance to a GPIO. Note that this is not necessary for a state machine to * be able to read the *input* value from a GPIO, but only for it to set the * output value or output enable. * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param pin the GPIO pin whose function select to set */ static inline void pio_gpio_init(PIO pio, uint pin) { assert(pio == pio0 || pio == pio1); gpio_set_function(pin, pio == pio0 ? GPIO_FUNC_PIO0 : GPIO_FUNC_PIO1); } /*! \brief Return the DREQ to use for pacing transfers to a particular state machine * \ingroup hardware_pio * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param sm State machine index (0..3) * \param is_tx true for sending data to the state machine, false for received data from the state machine */ static inline uint pio_get_dreq(PIO pio, uint sm, bool is_tx) { assert(pio == pio0 || pio == pio1); check_sm_param(sm); return sm + (is_tx ? 0 : NUM_PIO_STATE_MACHINES) + (pio == pio0 ? DREQ_PIO0_TX0 : DREQ_PIO1_TX0); } typedef struct pio_program { const uint16_t *instructions; uint8_t length; int8_t origin; // required instruction memory origin or -1 } __packed pio_program_t; /*! \brief Determine whether the given program can (at the time of the call) be loaded onto the PIO instance * \ingroup hardware_pio * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param program the program definition * \return true if the program can be loaded; false if there is not suitable space in the instruction memory */ bool pio_can_add_program(PIO pio, const pio_program_t *program); /*! \brief Determine whether the given program can (at the time of the call) be loaded onto the PIO instance starting at a particular location * \ingroup hardware_pio * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param program the program definition * \param offset the instruction memory offset wanted for the start of the program * \return true if the program can be loaded at that location; false if there is not space in the instruction memory */ bool pio_can_add_program_at_offset(PIO pio, const pio_program_t *program, uint offset); /*! \brief Attempt to load the program, panicking if not possible * \ingroup hardware_pio * * \see pico_can_add_program if you need to check whether the program can be loaded * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param program the program definition * \return the instruction memory offset the program is loaded at */ uint pio_add_program(PIO pio, const pio_program_t *program); /*! \brief Attempt to load the program at the specified instruction memory offset, panicking if not possible * \ingroup hardware_pio * * \see pico_can_add_program_at_offset if you need to check whether the program can be loaded * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param program the program definition * \param offset the instruction memory offset wanted for the start of the program */ void pio_add_program_at_offset(PIO pio, const pio_program_t *program, uint offset); /*! \brief Remove a program from a PIO instance's instruction memory * \ingroup hardware_pio * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param program the program definition * \param loaded_offset the loaded offset returned when the program was added */ void pio_remove_program(PIO pio, const pio_program_t *program, uint loaded_offset); /*! \brief Clears all of a PIO instance's instruction memory * \ingroup hardware_pio * * \param pio The PIO instance; either \ref pio0 or \ref pio1 */ void pio_clear_instruction_memory(PIO pio); /*! \brief Resets the state machine to a consistent state, and configures it * \ingroup hardware_pio * * This method: * - Disables the state machine (if running) * - Clears the FIFOs * - Applies the configuration specified by 'config' * - Resets any internal state e.g. shift counters * - Jumps to the initial program location given by 'initial_pc' * * The state machine is left disabled on return from this call. * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param sm State machine index (0..3) * \param initial_pc the initial program memory offset to run from * \param config the configuration to apply (or NULL to apply defaults) */ void pio_sm_init(PIO pio, uint sm, uint initial_pc, const pio_sm_config *config); /*! \brief Enable or disable a PIO state machine * \ingroup hardware_pio * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param sm State machine index (0..3) * \param enabled true to enable the state machine; false to disable */ static inline void pio_sm_set_enabled(PIO pio, uint sm, bool enabled) { pio->ctrl = (pio->ctrl & ~(1u << sm)) | (!!enabled << sm); } /*! \brief Enable or disable multiple PIO state machines * \ingroup hardware_pio * * Note that this method just sets the enabled state of the state machine; * if now enabled they continue exactly from where they left off. * * \see pio_enable_sm_mask_in_sync if you wish to enable multiple state machines * and ensure their clock dividers are in sync. * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param mask bit mask of state machine indexes to modify the enabled state of * \param enabled true to enable the state machines; false to disable */ static inline void pio_set_sm_mask_enabled(PIO pio, uint32_t mask, bool enabled) { pio->ctrl = (pio->ctrl & ~mask) | (enabled ? mask : 0u); } /*! \brief Restart a state machine with a known state * \ingroup hardware_pio * * This method clears the ISR, shift counters, clock divider counter * pin write flags, delay counter, latched EXEC instruction, and IRQ wait condition. * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param sm State machine index (0..3) */ static inline void pio_sm_restart(PIO pio, uint sm) { pio->ctrl |= 1u << (PIO_CTRL_SM_RESTART_LSB + sm); } /*! \brief Restart multiple state machine with a known state * \ingroup hardware_pio * * This method clears the ISR, shift counters, clock divider counter * pin write flags, delay counter, latched EXEC instruction, and IRQ wait condition. * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param mask bit mask of state machine indexes to modify the enabled state of */ static inline void pio_restart_sm_mask(PIO pio, uint32_t mask) { pio->ctrl |= (mask << PIO_CTRL_SM_RESTART_LSB) & PIO_CTRL_SM_RESTART_BITS; } /*! \brief Restart a state machine's clock divider from a phase of 0 * \ingroup hardware_pio * * Each state machine's clock divider is a free-running piece of hardware, * that generates a pattern of clock enable pulses for the state machine, * based *only* on the configured integer/fractional divisor. The pattern of * enabled/disabled cycles slows the state machine's execution to some * controlled rate. * * This function clears the divider's integer and fractional phase * accumulators so that it restarts this pattern from the beginning. It is * called automatically by pio_sm_init() but can also be called at a later * time, when you enable the state machine, to ensure precisely consistent * timing each time you load and run a given PIO program. * * More commonly this hardware mechanism is used to synchronise the execution * clocks of multiple state machines -- see pio_clkdiv_restart_sm_mask(). * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param sm State machine index (0..3) */ static inline void pio_sm_clkdiv_restart(PIO pio, uint sm) { pio->ctrl |= 1u << (PIO_CTRL_CLKDIV_RESTART_LSB + sm); } /*! \brief Restart multiple state machines' clock dividers from a phase of 0. * \ingroup hardware_pio * * Each state machine's clock divider is a free-running piece of hardware, * that generates a pattern of clock enable pulses for the state machine, * based *only* on the configured integer/fractional divisor. The pattern of * enabled/disabled cycles slows the state machine's execution to some * controlled rate. * * This function simultaneously clears the integer and fractional phase * accumulators of multiple state machines' clock dividers. If these state * machines all have the same integer and fractional divisors configured, * their clock dividers will run in precise deterministic lockstep from this * point. * * With their execution clocks synchronised in this way, it is then safe to * e.g. have multiple state machines performing a 'wait irq' on the same flag, * and all clear it on the same cycle. * * Also note that this function can be called whilst state machines are * running (e.g. if you have just changed the clock divisors of some state * machines and wish to resynchronise them), and that disabling a state * machine does not halt its clock divider: that is, if multiple state * machines have their clocks synchronised, you can safely disable and * reenable one of the state machines without losing synchronisation. * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param mask bit mask of state machine indexes to modify the enabled state of */ static inline void pio_clkdiv_restart_sm_mask(PIO pio, uint32_t mask) { pio->ctrl |= (mask << PIO_CTRL_CLKDIV_RESTART_LSB) & PIO_CTRL_CLKDIV_RESTART_BITS; } /*! \brief Enable multiple PIO state machines synchronizing their clock dividers * \ingroup hardware_pio * * This is equivalent to calling both pio_set_sm_mask_enabled() and * pio_clkdiv_restart_sm_mask() on the *same* clock cycle. All state machines * specified by 'mask' are started simultaneously and, assuming they have the * same clock divisors, their divided clocks will stay precisely synchronised. * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param mask bit mask of state machine indexes to modify the enabled state of */ static inline void pio_enable_sm_mask_in_sync(PIO pio, uint32_t mask) { pio->ctrl |= ((mask << PIO_CTRL_CLKDIV_RESTART_LSB) & PIO_CTRL_CLKDIV_RESTART_BITS) | ((mask << PIO_CTRL_SM_ENABLE_LSB) & PIO_CTRL_SM_ENABLE_BITS); } /*! \brief Return the current program counter for a state machine * \ingroup hardware_pio * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param sm State machine index (0..3) * \return the program counter */ static inline uint8_t pio_sm_get_pc(PIO pio, uint sm) { check_sm_param(sm); return (uint8_t) pio->sm[sm].addr; } /*! \brief Immediately execute an instruction on a state machine * \ingroup hardware_pio * * This instruction is executed instead of the next instruction in the normal control flow on the state machine. * Subsequent calls to this method replace the previous executed * instruction if it is still running. \see pio_sm_is_exec_stalled to see if an executed instruction * is still running (i.e. it is stalled on some condition) * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param sm State machine index (0..3) * \param instr the encoded PIO instruction */ inline static void pio_sm_exec(PIO pio, uint sm, uint instr) { check_sm_param(sm); pio->sm[sm].instr = instr; } /*! \brief Determine if an instruction set by pio_sm_exec() is stalled executing * \ingroup hardware_pio * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param sm State machine index (0..3) * \return true if the executed instruction is still running (stalled) */ static inline bool pio_sm_is_exec_stalled(PIO pio, uint sm) { check_sm_param(sm); return !!(pio->sm[sm].execctrl & PIO_SM0_EXECCTRL_EXEC_STALLED_BITS); } /*! \brief Immediately execute an instruction on a state machine and wait for it to complete * \ingroup hardware_pio * * This instruction is executed instead of the next instruction in the normal control flow on the state machine. * Subsequent calls to this method replace the previous executed * instruction if it is still running. \see pio_sm_is_exec_stalled to see if an executed instruction * is still running (i.e. it is stalled on some condition) * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param sm State machine index (0..3) * \param instr the encoded PIO instruction */ static inline void pio_sm_exec_wait_blocking(PIO pio, uint sm, uint instr) { pio_sm_exec(pio, sm, instr); while (pio_sm_is_exec_stalled(pio, sm)) tight_loop_contents(); } /*! \brief Set the current wrap configuration for a state machine * \ingroup hardware_pio * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param sm State machine index (0..3) * \param wrap_target the instruction memory address to wrap to * \param wrap the instruction memory address after which to set the program counter to wrap_target * if the instruction does not itself update the program_counter */ static inline void pio_sm_set_wrap(PIO pio, uint sm, uint wrap_target, uint wrap) { check_sm_param(sm); pio->sm[sm].execctrl = (pio->sm[sm].execctrl & ~(PIO_SM0_EXECCTRL_WRAP_TOP_BITS | PIO_SM0_EXECCTRL_WRAP_BOTTOM_BITS)) | (wrap_target << PIO_SM0_EXECCTRL_WRAP_BOTTOM_LSB) | (wrap << PIO_SM0_EXECCTRL_WRAP_TOP_LSB); } /*! \brief Set the current 'out' pins for a state machine * \ingroup sm_config * * Can overlap with the 'in', 'set' and 'sideset' pins * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param sm State machine index (0..3) * \param out_base 0-31 First pin to set as output * \param out_count 0-32 Number of pins to set. */ static inline void pio_sm_set_out_pins(PIO pio, uint sm, uint out_base, uint out_count) { check_sm_param(sm); assert(out_base < 32); assert(out_count <= 32); pio->sm[sm].pinctrl = (pio->sm[sm].pinctrl & ~(PIO_SM0_PINCTRL_OUT_BASE_BITS | PIO_SM0_PINCTRL_OUT_COUNT_BITS)) | (out_base << PIO_SM0_PINCTRL_OUT_BASE_LSB) | (out_count << PIO_SM0_PINCTRL_OUT_COUNT_LSB); } /*! \brief Set the current 'set' pins for a state machine * \ingroup sm_config * * Can overlap with the 'in', 'out' and 'sideset' pins * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param sm State machine index (0..3) * \param set_base 0-31 First pin to set as * \param set_count 0-5 Number of pins to set. */ static inline void pio_sm_set_set_pins(PIO pio, uint sm, uint set_base, uint set_count) { check_sm_param(sm); assert(set_base < 32); assert(set_count <= 5); pio->sm[sm].pinctrl = (pio->sm[sm].pinctrl & ~(PIO_SM0_PINCTRL_SET_BASE_BITS | PIO_SM0_PINCTRL_SET_COUNT_BITS)) | (set_base << PIO_SM0_PINCTRL_SET_BASE_LSB) | (set_count << PIO_SM0_PINCTRL_SET_COUNT_LSB); } /*! \brief Set the current 'in' pins for a state machine * \ingroup sm_config * * Can overlap with the 'out', ''set' and 'sideset' pins * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param sm State machine index (0..3) * \param in_base 0-31 First pin to use as input */ static inline void pio_sm_set_in_pins(PIO pio, uint sm, uint in_base) { check_sm_param(sm); assert(in_base < 32); pio->sm[sm].pinctrl = (pio->sm[sm].pinctrl & ~PIO_SM0_PINCTRL_IN_BASE_BITS) | (in_base << PIO_SM0_PINCTRL_IN_BASE_LSB); } /*! \brief Set the current 'sideset' pins for a state machine * \ingroup sm_config * * Can overlap with the 'in', 'out' and 'set' pins * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param sm State machine index (0..3) * \param sideset_base 0-31 base pin for 'side set' */ static inline void pio_sm_set_sideset_pins(PIO pio, uint sm, uint sideset_base) { check_sm_param(sm); assert(sideset_base < 32); pio->sm[sm].pinctrl = (pio->sm[sm].pinctrl & ~PIO_SM0_PINCTRL_SIDESET_BASE_BITS) | (sideset_base << PIO_SM0_PINCTRL_SIDESET_BASE_LSB); } /*! \brief Write a word of data to a state machine's TX FIFO * \ingroup hardware_pio * * This is a raw FIFO access that does not check for fullness. If the FIFO is * full, the FIFO contents and state are not affected by the write attempt. * Hardware sets the TXOVER sticky flag for this FIFO in FDEBUG, to indicate * that the system attempted to write to a full FIFO. * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param sm State machine index (0..3) * \param data the 32 bit data value * * \sa pio_sm_put_blocking */ static inline void pio_sm_put(PIO pio, uint sm, uint32_t data) { check_sm_param(sm); pio->txf[sm] = data; } /*! \brief Read a word of data from a state machine's RX FIFO * \ingroup hardware_pio * * This is a raw FIFO access that does not check for emptiness. If the FIFO is * empty, the hardware ignores the attempt to read from the FIFO (the FIFO * remains in an empty state following the read) and the sticky RXUNDER flag * for this FIFO is set in FDEBUG to indicate that the system tried to read * from this FIFO when empty. The data returned by this function is undefined * when the FIFO is empty. * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param sm State machine index (0..3) * * \sa pio_sm_get_blocking */ static inline uint32_t pio_sm_get(PIO pio, uint sm) { check_sm_param(sm); return pio->rxf[sm]; } /*! \brief Determine if a state machine's RX FIFO is full * \ingroup hardware_pio * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param sm State machine index (0..3) * \return true if the RX FIFO is full */ static inline bool pio_sm_is_rx_fifo_full(PIO pio, uint sm) { check_sm_param(sm); return (pio->fstat & (1u << (PIO_FSTAT_RXFULL_LSB + sm))) != 0; } /*! \brief Determine if a state machine's RX FIFO is empty * \ingroup hardware_pio * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param sm State machine index (0..3) * \return true if the RX FIFO is empty */ static inline bool pio_sm_is_rx_fifo_empty(PIO pio, uint sm) { check_sm_param(sm); return (pio->fstat & (1u << (PIO_FSTAT_RXEMPTY_LSB + sm))) != 0; } /*! \brief Return the number of elements currently in a state machine's RX FIFO * \ingroup hardware_pio * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param sm State machine index (0..3) * \return the number of elements in the RX FIFO */ static inline uint pio_sm_get_rx_fifo_level(PIO pio, uint sm) { check_sm_param(sm); int bitoffs = PIO_FLEVEL_RX0_LSB + sm * (PIO_FLEVEL_RX1_LSB - PIO_FLEVEL_RX0_LSB); const uint32_t mask = PIO_FLEVEL_RX0_BITS >> PIO_FLEVEL_RX0_LSB; return (pio->flevel >> bitoffs) & mask; } /*! \brief Determine if a state machine's TX FIFO is full * \ingroup hardware_pio * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param sm State machine index (0..3) * \return true if the TX FIFO is full */ static inline bool pio_sm_is_tx_fifo_full(PIO pio, uint sm) { check_sm_param(sm); return (pio->fstat & (1u << (PIO_FSTAT_TXFULL_LSB + sm))) != 0; } /*! \brief Determine if a state machine's TX FIFO is empty * \ingroup hardware_pio * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param sm State machine index (0..3) * \return true if the TX FIFO is empty */ static inline bool pio_sm_is_tx_fifo_empty(PIO pio, uint sm) { check_sm_param(sm); return (pio->fstat & (1u << (PIO_FSTAT_TXEMPTY_LSB + sm))) != 0; } /*! \brief Return the number of elements currently in a state machine's TX FIFO * \ingroup hardware_pio * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param sm State machine index (0..3) * \return the number of elements in the TX FIFO */ static inline uint pio_sm_get_tx_fifo_level(PIO pio, uint sm) { check_sm_param(sm); unsigned int bitoffs = PIO_FLEVEL_TX0_LSB + sm * (PIO_FLEVEL_TX1_LSB - PIO_FLEVEL_TX0_LSB); const uint32_t mask = PIO_FLEVEL_TX0_BITS >> PIO_FLEVEL_TX0_LSB; return (pio->flevel >> bitoffs) & mask; } /*! \brief Write a word of data to a state machine's TX FIFO, blocking if the FIFO is full * \ingroup hardware_pio * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param sm State machine index (0..3) * \param data the 32 bit data value */ static inline void pio_sm_put_blocking(PIO pio, uint sm, uint32_t data) { check_sm_param(sm); while (pio_sm_is_tx_fifo_full(pio, sm)) tight_loop_contents(); pio_sm_put(pio, sm, data); } /*! \brief Read a word of data from a state machine's RX FIFO, blocking if the FIFO is empty * \ingroup hardware_pio * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param sm State machine index (0..3) */ static inline uint32_t pio_sm_get_blocking(PIO pio, uint sm) { check_sm_param(sm); while (pio_sm_is_rx_fifo_empty(pio, sm)) tight_loop_contents(); return pio_sm_get(pio, sm); } /*! \brief Empty out a state machine's TX FIFO * \ingroup hardware_pio * * This method executes `pull` instructions on the state machine until the TX * FIFO is empty. This disturbs the contents of the OSR, so see also * pio_sm_clear_fifos() which clears both FIFOs but leaves the state machine's * internal state undisturbed. * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param sm State machine index (0..3) * * \sa pio_sm_clear_fifos */ void pio_sm_drain_tx_fifo(PIO pio, uint sm); /*! \brief set the current clock divider for a state machine * \ingroup hardware_pio * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param sm State machine index (0..3) * \param div the floating point clock divider */ static inline void pio_sm_set_clkdiv(PIO pio, uint sm, float div) { check_sm_param(sm); uint16_t div_int = (uint16_t) div; uint8_t div_frac = (uint8_t) ((div - div_int) * (1u << 8u)); pio->sm[sm].clkdiv = (div_frac << PIO_SM0_CLKDIV_FRAC_LSB) | (div_int << PIO_SM0_CLKDIV_INT_LSB); } /*! \brief set the current clock divider for a state machine using a 16:8 fraction * \ingroup hardware_pio * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param sm State machine index (0..3) * \param div_int the integer part of the clock divider * \param div_frac the fractional part of the clock divider in 1/256s */ static inline void pio_sm_set_clkdiv_int_frac(PIO pio, uint sm, uint16_t div_int, uint8_t div_frac) { check_sm_param(sm); pio->sm[sm].clkdiv = (div_frac << PIO_SM0_CLKDIV_FRAC_LSB) | (div_int << PIO_SM0_CLKDIV_INT_LSB); } /*! \brief Clear a state machine's TX and RX FIFOs * \ingroup hardware_pio * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param sm State machine index (0..3) */ static inline void pio_sm_clear_fifos(PIO pio, uint sm) { // changing the FIFO join state clears the fifo check_sm_param(sm); hw_xor_bits(&pio->sm[sm].shiftctrl, PIO_SM0_SHIFTCTRL_FJOIN_RX_BITS); hw_xor_bits(&pio->sm[sm].shiftctrl, PIO_SM0_SHIFTCTRL_FJOIN_RX_BITS); } /*! \brief Use a state machine to set a value on all pins for the PIO instance * \ingroup hardware_pio * * This method repeatedly reconfigures the target state machine's pin configuration and executes 'set' instructions to set values on all 32 pins, * before restoring the state machine's pin configuration to what it was. * * This method is provided as a convenience to set initial pin states, and should not be used against a state machine that is enabled. * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param sm State machine index (0..3) to use * \param pin_values the pin values to set */ void pio_sm_set_pins(PIO pio, uint sm, uint32_t pin_values); /*! \brief Use a state machine to set a value on multiple pins for the PIO instance * \ingroup hardware_pio * * This method repeatedly reconfigures the target state machine's pin configuration and executes 'set' instructions to set values on up to 32 pins, * before restoring the state machine's pin configuration to what it was. * * This method is provided as a convenience to set initial pin states, and should not be used against a state machine that is enabled. * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param sm State machine index (0..3) to use * \param pin_values the pin values to set (if the corresponding bit in pin_mask is set) * \param pin_mask a bit for each pin to indicate whether the corresponding pin_value for that pin should be applied. */ void pio_sm_set_pins_with_mask(PIO pio, uint sm, uint32_t pin_values, uint32_t pin_mask); /*! \brief Use a state machine to set the pin directions for multiple pins for the PIO instance * \ingroup hardware_pio * * This method repeatedly reconfigures the target state machine's pin configuration and executes 'set' instructions to set pin directions on up to 32 pins, * before restoring the state machine's pin configuration to what it was. * * This method is provided as a convenience to set initial pin directions, and should not be used against a state machine that is enabled. * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param sm State machine index (0..3) to use * \param pin_dirs the pin directions to set - 1 = out, 0 = in (if the corresponding bit in pin_mask is set) * \param pin_mask a bit for each pin to indicate whether the corresponding pin_value for that pin should be applied. */ void pio_sm_set_pindirs_with_mask(PIO pio, uint sm, uint32_t pin_dirs, uint32_t pin_mask); /*! \brief Use a state machine to set the same pin direction for multiple consecutive pins for the PIO instance * \ingroup hardware_pio * * This method repeatedly reconfigures the target state machine's pin configuration and executes 'set' instructions to set the pin direction on consecutive pins, * before restoring the state machine's pin configuration to what it was. * * This method is provided as a convenience to set initial pin directions, and should not be used against a state machine that is enabled. * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param sm State machine index (0..3) to use * \param pin_base the first pin to set a direction for * \param pin_count the count of consecutive pins to set the direction for * \param is_out the direction to set; true = out, false = in */ void pio_sm_set_consecutive_pindirs(PIO pio, uint sm, uint pin_base, uint pin_count, bool is_out); /*! \brief Mark a state machine as used * \ingroup hardware_pio * * Method for cooperative claiming of hardware. Will cause a panic if the state machine * is already claimed. Use of this method by libraries detects accidental * configurations that would fail in unpredictable ways. * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param sm State machine index (0..3) */ void pio_sm_claim(PIO pio, uint sm); /*! \brief Mark multiple state machines as used * \ingroup hardware_pio * * Method for cooperative claiming of hardware. Will cause a panic if any of the state machines * are already claimed. Use of this method by libraries detects accidental * configurations that would fail in unpredictable ways. * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param sm_mask Mask of state machine indexes */ void pio_claim_sm_mask(PIO pio, uint sm_mask); /*! \brief Mark a state machine as no longer used * \ingroup hardware_pio * * Method for cooperative claiming of hardware. * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param sm State machine index (0..3) */ void pio_sm_unclaim(PIO pio, uint sm); /*! \brief Claim a free state machine on a PIO instance * \ingroup hardware_pio * * \param pio The PIO instance; either \ref pio0 or \ref pio1 * \param required if true the function will panic if none are available * \return the state machine index or -1 if required was false, and none were free */ int pio_claim_unused_sm(PIO pio, bool required); #ifdef __cplusplus } #endif #endif // _PIO_H_