/* * Copyright (c) 2020 Raspberry Pi (Trading) Ltd. * * SPDX-License-Identifier: BSD-3-Clause */ #ifndef _HARDWARE_SPI_H #define _HARDWARE_SPI_H #include "pico.h" #include "pico/time.h" #include "hardware/structs/spi.h" // PICO_CONFIG: PARAM_ASSERTIONS_ENABLED_SPI, Enable/disable assertions in the SPI module, type=bool, default=0, group=hardware_spi #ifndef PARAM_ASSERTIONS_ENABLED_SPI #define PARAM_ASSERTIONS_ENABLED_SPI 0 #endif #ifdef __cplusplus extern "C" { #endif /** \file hardware/spi.h * \defgroup hardware_spi hardware_spi * * Hardware SPI API * * RP2040 has 2 identical instances of the Serial Peripheral Interface (SPI) controller. * * The PrimeCell SSP is a master or slave interface for synchronous serial communication with peripheral devices that have * Motorola SPI, National Semiconductor Microwire, or Texas Instruments synchronous serial interfaces. * * Controller can be defined as master or slave using the \ref spi_set_slave function. * * Each controller can be connected to a number of GPIO pins, see the datasheet GPIO function selection table for more information. */ // PICO_CONFIG: PICO_DEFAULT_SPI, Define the default SPI for a board, min=0, max=1, group=hardware_spi // PICO_CONFIG: PICO_DEFAULT_SPI_SCK_PIN, Define the default SPI SCK pin, min=0, max=29, group=hardware_spi // PICO_CONFIG: PICO_DEFAULT_SPI_TX_PIN, Define the default SPI TX pin, min=0, max=29, group=hardware_spi // PICO_CONFIG: PICO_DEFAULT_SPI_RX_PIN, Define the default SPI RX pin, min=0, max=29, group=hardware_spi // PICO_CONFIG: PICO_DEFAULT_SPI_CSN_PIN, Define the default SPI CSN pin, min=0, max=29, group=hardware_spi /** * Opaque type representing an SPI instance. */ typedef struct spi_inst spi_inst_t; /** Identifier for the first (SPI 0) hardware SPI instance (for use in SPI functions). * * e.g. spi_init(spi0, 48000) * * \ingroup hardware_spi */ #define spi0 ((spi_inst_t * const)spi0_hw) /** Identifier for the second (SPI 1) hardware SPI instance (for use in SPI functions). * * e.g. spi_init(spi1, 48000) * * \ingroup hardware_spi */ #define spi1 ((spi_inst_t * const)spi1_hw) #if !defined(PICO_DEFAULT_SPI_INSTANCE) && defined(PICO_DEFAULT_SPI) #define PICO_DEFAULT_SPI_INSTANCE (__CONCAT(spi,PICO_DEFAULT_SPI)) #endif #ifdef PICO_DEFAULT_SPI_INSTANCE #define spi_default PICO_DEFAULT_SPI_INSTANCE #endif /** \brief Enumeration of SPI CPHA (clock phase) values. * \ingroup hardware_spi */ typedef enum { SPI_CPHA_0 = 0, SPI_CPHA_1 = 1 } spi_cpha_t; /** \brief Enumeration of SPI CPOL (clock polarity) values. * \ingroup hardware_spi */ typedef enum { SPI_CPOL_0 = 0, SPI_CPOL_1 = 1 } spi_cpol_t; /** \brief Enumeration of SPI bit-order values. * \ingroup hardware_spi */ typedef enum { SPI_LSB_FIRST = 0, SPI_MSB_FIRST = 1 } spi_order_t; // ---------------------------------------------------------------------------- // Setup /*! \brief Initialise SPI instances * \ingroup hardware_spi * Puts the SPI into a known state, and enable it. Must be called before other * functions. * * \param spi SPI instance specifier, either \ref spi0 or \ref spi1 * \param baudrate Baudrate required in Hz * * \note There is no guarantee that the baudrate requested will be possible, the nearest will be chosen, * and this function does not return any indication of this. You can use the \ref spi_set_baudrate function * which will return the actual baudrate selected if this is important. */ void spi_init(spi_inst_t *spi, uint baudrate); /*! \brief Deinitialise SPI instances * \ingroup hardware_spi * Puts the SPI into a disabled state. Init will need to be called to reenable the device * functions. * * \param spi SPI instance specifier, either \ref spi0 or \ref spi1 */ void spi_deinit(spi_inst_t *spi); /*! \brief Set SPI baudrate * \ingroup hardware_spi * * Set SPI frequency as close as possible to baudrate, and return the actual * achieved rate. * * \param spi SPI instance specifier, either \ref spi0 or \ref spi1 * \param baudrate Baudrate required in Hz, should be capable of a bitrate of at least 2Mbps, or higher, depending on system clock settings. * \return The actual baudrate set */ uint spi_set_baudrate(spi_inst_t *spi, uint baudrate); /*! \brief Convert SPI instance to hardware instance number * \ingroup hardware_spi * * \param spi SPI instance * \return Number of SPI, 0 or 1. */ static inline uint spi_get_index(spi_inst_t *spi) { invalid_params_if(SPI, spi != spi0 && spi != spi1); return spi == spi1 ? 1 : 0; } static inline spi_hw_t *spi_get_hw(spi_inst_t *spi) { spi_get_index(spi); // check it is a hw spi return (spi_hw_t *)spi; } /*! \brief Configure SPI * \ingroup hardware_spi * * Configure how the SPI serialises and deserialises data on the wire * * \param spi SPI instance specifier, either \ref spi0 or \ref spi1 * \param data_bits Number of data bits per transfer. Valid values 4..16. * \param cpol SSPCLKOUT polarity, applicable to Motorola SPI frame format only. * \param cpha SSPCLKOUT phase, applicable to Motorola SPI frame format only * \param order Must be SPI_MSB_FIRST, no other values supported on the PL022 */ static inline void spi_set_format(spi_inst_t *spi, uint data_bits, spi_cpol_t cpol, spi_cpha_t cpha, __unused spi_order_t order) { invalid_params_if(SPI, data_bits < 4 || data_bits > 16); // LSB-first not supported on PL022: invalid_params_if(SPI, order != SPI_MSB_FIRST); invalid_params_if(SPI, cpol != SPI_CPOL_0 && cpol != SPI_CPOL_1); invalid_params_if(SPI, cpha != SPI_CPHA_0 && cpha != SPI_CPHA_1); hw_write_masked(&spi_get_hw(spi)->cr0, ((uint)(data_bits - 1)) << SPI_SSPCR0_DSS_LSB | ((uint)cpol) << SPI_SSPCR0_SPO_LSB | ((uint)cpha) << SPI_SSPCR0_SPH_LSB, SPI_SSPCR0_DSS_BITS | SPI_SSPCR0_SPO_BITS | SPI_SSPCR0_SPH_BITS); } /*! \brief Set SPI master/slave * \ingroup hardware_spi * * Configure the SPI for master- or slave-mode operation. By default, * spi_init() sets master-mode. * * \param spi SPI instance specifier, either \ref spi0 or \ref spi1 * \param slave true to set SPI device as a slave device, false for master. */ static inline void spi_set_slave(spi_inst_t *spi, bool slave) { if (slave) hw_set_bits(&spi_get_hw(spi)->cr1, SPI_SSPCR1_MS_BITS); else hw_clear_bits(&spi_get_hw(spi)->cr1, SPI_SSPCR1_MS_BITS); } // ---------------------------------------------------------------------------- // Generic input/output /*! \brief Check whether a write can be done on SPI device * \ingroup hardware_spi * * \param spi SPI instance specifier, either \ref spi0 or \ref spi1 * \return 0 if no space is available to write. Non-zero if a write is possible * * \note Although the controllers each have a 8 deep TX FIFO, the current HW implementation can only return 0 or 1 * rather than the space available. */ static inline size_t spi_is_writable(spi_inst_t *spi) { // PL022 doesn't expose levels directly, so return values are only 0 or 1 return (spi_get_hw(spi)->sr & SPI_SSPSR_TNF_BITS) >> SPI_SSPSR_TNF_LSB; } /*! \brief Check whether a read can be done on SPI device * \ingroup hardware_spi * * \param spi SPI instance specifier, either \ref spi0 or \ref spi1 * \return Non-zero if a read is possible i.e. data is present * * \note Although the controllers each have a 8 deep RX FIFO, the current HW implementation can only return 0 or 1 * rather than the data available. */ static inline size_t spi_is_readable(spi_inst_t *spi) { return (spi_get_hw(spi)->sr & SPI_SSPSR_RNE_BITS) >> SPI_SSPSR_RNE_LSB; } /*! \brief Write/Read to/from an SPI device * \ingroup hardware_spi * * Write \p len bytes from \p src to SPI. Simultaneously read \p len bytes from SPI to \p dst. * Blocks until all data is transferred. No timeout, as SPI hardware always transfers at a known data rate. * * \param spi SPI instance specifier, either \ref spi0 or \ref spi1 * \param src Buffer of data to write * \param dst Buffer for read data * \param len Length of BOTH buffers * \return Number of bytes written/read */ int spi_write_read_blocking(spi_inst_t *spi, const uint8_t *src, uint8_t *dst, size_t len); /*! \brief Write to an SPI device, blocking * \ingroup hardware_spi * * Write \p len bytes from \p src to SPI, and discard any data received back * Blocks until all data is transferred. No timeout, as SPI hardware always transfers at a known data rate. * * \param spi SPI instance specifier, either \ref spi0 or \ref spi1 * \param src Buffer of data to write * \param len Length of \p src * \return Number of bytes written/read */ int spi_write_blocking(spi_inst_t *spi, const uint8_t *src, size_t len); /*! \brief Read from an SPI device * \ingroup hardware_spi * * Read \p len bytes from SPI to \p dst. * Blocks until all data is transferred. No timeout, as SPI hardware always transfers at a known data rate. * \p repeated_tx_data is output repeatedly on TX as data is read in from RX. * Generally this can be 0, but some devices require a specific value here, * e.g. SD cards expect 0xff * * \param spi SPI instance specifier, either \ref spi0 or \ref spi1 * \param repeated_tx_data Buffer of data to write * \param dst Buffer for read data * \param len Length of buffer \p dst * \return Number of bytes written/read */ int spi_read_blocking(spi_inst_t *spi, uint8_t repeated_tx_data, uint8_t *dst, size_t len); // ---------------------------------------------------------------------------- // SPI-specific operations and aliases // FIXME need some instance-private data for select() and deselect() if we are going that route /*! \brief Write/Read half words to/from an SPI device * \ingroup hardware_spi * * Write \p len halfwords from \p src to SPI. Simultaneously read \p len halfwords from SPI to \p dst. * Blocks until all data is transferred. No timeout, as SPI hardware always transfers at a known data rate. * * \note SPI should be initialised with 16 data_bits using \ref spi_set_format first, otherwise this function will only read/write 8 data_bits. * * \param spi SPI instance specifier, either \ref spi0 or \ref spi1 * \param src Buffer of data to write * \param dst Buffer for read data * \param len Length of BOTH buffers in halfwords * \return Number of halfwords written/read */ int spi_write16_read16_blocking(spi_inst_t *spi, const uint16_t *src, uint16_t *dst, size_t len); /*! \brief Write to an SPI device * \ingroup hardware_spi * * Write \p len halfwords from \p src to SPI. Discard any data received back. * Blocks until all data is transferred. No timeout, as SPI hardware always transfers at a known data rate. * * \note SPI should be initialised with 16 data_bits using \ref spi_set_format first, otherwise this function will only write 8 data_bits. * * \param spi SPI instance specifier, either \ref spi0 or \ref spi1 * \param src Buffer of data to write * \param len Length of buffers * \return Number of halfwords written/read */ int spi_write16_blocking(spi_inst_t *spi, const uint16_t *src, size_t len); /*! \brief Read from an SPI device * \ingroup hardware_spi * * Read \p len halfwords from SPI to \p dst. * Blocks until all data is transferred. No timeout, as SPI hardware always transfers at a known data rate. * \p repeated_tx_data is output repeatedly on TX as data is read in from RX. * Generally this can be 0, but some devices require a specific value here, * e.g. SD cards expect 0xff * * \note SPI should be initialised with 16 data_bits using \ref spi_set_format first, otherwise this function will only read 8 data_bits. * * \param spi SPI instance specifier, either \ref spi0 or \ref spi1 * \param repeated_tx_data Buffer of data to write * \param dst Buffer for read data * \param len Length of buffer \p dst in halfwords * \return Number of halfwords written/read */ int spi_read16_blocking(spi_inst_t *spi, uint16_t repeated_tx_data, uint16_t *dst, size_t len); #ifdef __cplusplus } #endif #endif