207 lines
7.6 KiB
C
207 lines
7.6 KiB
C
/*
|
|
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
|
|
*
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*/
|
|
|
|
#include "hardware/resets.h"
|
|
#include "hardware/clocks.h"
|
|
#include "hardware/spi.h"
|
|
|
|
static inline void spi_reset(spi_inst_t *spi) {
|
|
invalid_params_if(SPI, spi != spi0 && spi != spi1);
|
|
reset_block(spi == spi0 ? RESETS_RESET_SPI0_BITS : RESETS_RESET_SPI1_BITS);
|
|
}
|
|
|
|
static inline void spi_unreset(spi_inst_t *spi) {
|
|
invalid_params_if(SPI, spi != spi0 && spi != spi1);
|
|
unreset_block_wait(spi == spi0 ? RESETS_RESET_SPI0_BITS : RESETS_RESET_SPI1_BITS);
|
|
}
|
|
|
|
void spi_init(spi_inst_t *spi, uint baudrate) {
|
|
spi_reset(spi);
|
|
spi_unreset(spi);
|
|
|
|
(void) spi_set_baudrate(spi, baudrate);
|
|
spi_set_format(spi, 8, SPI_CPOL_0, SPI_CPHA_0, SPI_MSB_FIRST);
|
|
// Always enable DREQ signals -- harmless if DMA is not listening
|
|
hw_set_bits(&spi_get_hw(spi)->dmacr, SPI_SSPDMACR_TXDMAE_BITS | SPI_SSPDMACR_RXDMAE_BITS);
|
|
spi_set_format(spi, 8, SPI_CPOL_0, SPI_CPHA_0, SPI_MSB_FIRST);
|
|
|
|
// Finally enable the SPI
|
|
hw_set_bits(&spi_get_hw(spi)->cr1, SPI_SSPCR1_SSE_BITS);
|
|
}
|
|
|
|
void spi_deinit(spi_inst_t *spi) {
|
|
hw_clear_bits(&spi_get_hw(spi)->cr1, SPI_SSPCR1_SSE_BITS);
|
|
hw_clear_bits(&spi_get_hw(spi)->dmacr, SPI_SSPDMACR_TXDMAE_BITS | SPI_SSPDMACR_RXDMAE_BITS);
|
|
spi_reset(spi);
|
|
}
|
|
|
|
uint spi_set_baudrate(spi_inst_t *spi, uint baudrate) {
|
|
uint freq_in = clock_get_hz(clk_peri);
|
|
uint prescale, postdiv;
|
|
invalid_params_if(SPI, baudrate > freq_in);
|
|
|
|
// Find smallest prescale value which puts output frequency in range of
|
|
// post-divide. Prescale is an even number from 2 to 254 inclusive.
|
|
for (prescale = 2; prescale <= 254; prescale += 2) {
|
|
if (freq_in < (prescale + 2) * 256 * (uint64_t) baudrate)
|
|
break;
|
|
}
|
|
invalid_params_if(SPI, prescale > 254); // Frequency too low
|
|
|
|
// Find largest post-divide which makes output <= baudrate. Post-divide is
|
|
// an integer in the range 1 to 256 inclusive.
|
|
for (postdiv = 256; postdiv > 1; --postdiv) {
|
|
if (freq_in / (prescale * (postdiv - 1)) > baudrate)
|
|
break;
|
|
}
|
|
|
|
spi_get_hw(spi)->cpsr = prescale;
|
|
hw_write_masked(&spi_get_hw(spi)->cr0, (postdiv - 1) << SPI_SSPCR0_SCR_LSB, SPI_SSPCR0_SCR_BITS);
|
|
|
|
// Return the frequency we were able to achieve
|
|
return freq_in / (prescale * postdiv);
|
|
}
|
|
|
|
// Write len bytes from src to SPI. Simultaneously read len bytes from SPI to dst.
|
|
// Note this function is guaranteed to exit in a known amount of time (bits sent * time per bit)
|
|
int __not_in_flash_func(spi_write_read_blocking)(spi_inst_t *spi, const uint8_t *src, uint8_t *dst, size_t len) {
|
|
invalid_params_if(SPI, 0 > (int)len);
|
|
|
|
// Never have more transfers in flight than will fit into the RX FIFO,
|
|
// else FIFO will overflow if this code is heavily interrupted.
|
|
const size_t fifo_depth = 8;
|
|
size_t rx_remaining = len, tx_remaining = len;
|
|
|
|
while (rx_remaining || tx_remaining) {
|
|
if (tx_remaining && spi_is_writable(spi) && rx_remaining - tx_remaining < fifo_depth) {
|
|
spi_get_hw(spi)->dr = (uint32_t) *src++;
|
|
--tx_remaining;
|
|
}
|
|
if (rx_remaining && spi_is_readable(spi)) {
|
|
*dst++ = (uint8_t) spi_get_hw(spi)->dr;
|
|
--rx_remaining;
|
|
}
|
|
}
|
|
|
|
return (int)len;
|
|
}
|
|
|
|
// Write len bytes directly from src to the SPI, and discard any data received back
|
|
int __not_in_flash_func(spi_write_blocking)(spi_inst_t *spi, const uint8_t *src, size_t len) {
|
|
invalid_params_if(SPI, 0 > (int)len);
|
|
// Write to TX FIFO whilst ignoring RX, then clean up afterward. When RX
|
|
// is full, PL022 inhibits RX pushes, and sets a sticky flag on
|
|
// push-on-full, but continues shifting. Safe if SSPIMSC_RORIM is not set.
|
|
for (size_t i = 0; i < len; ++i) {
|
|
while (!spi_is_writable(spi))
|
|
tight_loop_contents();
|
|
spi_get_hw(spi)->dr = (uint32_t)src[i];
|
|
}
|
|
// Drain RX FIFO, then wait for shifting to finish (which may be *after*
|
|
// TX FIFO drains), then drain RX FIFO again
|
|
while (spi_is_readable(spi))
|
|
(void)spi_get_hw(spi)->dr;
|
|
while (spi_get_hw(spi)->sr & SPI_SSPSR_BSY_BITS)
|
|
tight_loop_contents();
|
|
while (spi_is_readable(spi))
|
|
(void)spi_get_hw(spi)->dr;
|
|
|
|
// Don't leave overrun flag set
|
|
spi_get_hw(spi)->icr = SPI_SSPICR_RORIC_BITS;
|
|
|
|
return (int)len;
|
|
}
|
|
|
|
// Read len bytes directly from the SPI to dst.
|
|
// repeated_tx_data is output repeatedly on SO as data is read in from SI.
|
|
// Generally this can be 0, but some devices require a specific value here,
|
|
// e.g. SD cards expect 0xff
|
|
int __not_in_flash_func(spi_read_blocking)(spi_inst_t *spi, uint8_t repeated_tx_data, uint8_t *dst, size_t len) {
|
|
invalid_params_if(SPI, 0 > (int)len);
|
|
const size_t fifo_depth = 8;
|
|
size_t rx_remaining = len, tx_remaining = len;
|
|
|
|
while (rx_remaining || tx_remaining) {
|
|
if (tx_remaining && spi_is_writable(spi) && rx_remaining - tx_remaining < fifo_depth) {
|
|
spi_get_hw(spi)->dr = (uint32_t) repeated_tx_data;
|
|
--tx_remaining;
|
|
}
|
|
if (rx_remaining && spi_is_readable(spi)) {
|
|
*dst++ = (uint8_t) spi_get_hw(spi)->dr;
|
|
--rx_remaining;
|
|
}
|
|
}
|
|
|
|
return (int)len;
|
|
}
|
|
|
|
// Write len halfwords from src to SPI. Simultaneously read len halfwords from SPI to dst.
|
|
int __not_in_flash_func(spi_write16_read16_blocking)(spi_inst_t *spi, const uint16_t *src, uint16_t *dst, size_t len) {
|
|
invalid_params_if(SPI, 0 > (int)len);
|
|
// Never have more transfers in flight than will fit into the RX FIFO,
|
|
// else FIFO will overflow if this code is heavily interrupted.
|
|
const size_t fifo_depth = 8;
|
|
size_t rx_remaining = len, tx_remaining = len;
|
|
|
|
while (rx_remaining || tx_remaining) {
|
|
if (tx_remaining && spi_is_writable(spi) && rx_remaining - tx_remaining < fifo_depth) {
|
|
spi_get_hw(spi)->dr = (uint32_t) *src++;
|
|
--tx_remaining;
|
|
}
|
|
if (rx_remaining && spi_is_readable(spi)) {
|
|
*dst++ = (uint16_t) spi_get_hw(spi)->dr;
|
|
--rx_remaining;
|
|
}
|
|
}
|
|
|
|
return (int)len;
|
|
}
|
|
|
|
// Write len bytes directly from src to the SPI, and discard any data received back
|
|
int __not_in_flash_func(spi_write16_blocking)(spi_inst_t *spi, const uint16_t *src, size_t len) {
|
|
invalid_params_if(SPI, 0 > (int)len);
|
|
// Deliberately overflow FIFO, then clean up afterward, to minimise amount
|
|
// of APB polling required per halfword
|
|
for (size_t i = 0; i < len; ++i) {
|
|
while (!spi_is_writable(spi))
|
|
tight_loop_contents();
|
|
spi_get_hw(spi)->dr = (uint32_t)src[i];
|
|
}
|
|
|
|
while (spi_is_readable(spi))
|
|
(void)spi_get_hw(spi)->dr;
|
|
while (spi_get_hw(spi)->sr & SPI_SSPSR_BSY_BITS)
|
|
tight_loop_contents();
|
|
while (spi_is_readable(spi))
|
|
(void)spi_get_hw(spi)->dr;
|
|
|
|
// Don't leave overrun flag set
|
|
spi_get_hw(spi)->icr = SPI_SSPICR_RORIC_BITS;
|
|
|
|
return (int)len;
|
|
}
|
|
|
|
// Read len halfwords directly from the SPI to dst.
|
|
// repeated_tx_data is output repeatedly on SO as data is read in from SI.
|
|
int __not_in_flash_func(spi_read16_blocking)(spi_inst_t *spi, uint16_t repeated_tx_data, uint16_t *dst, size_t len) {
|
|
invalid_params_if(SPI, 0 > (int)len);
|
|
const size_t fifo_depth = 8;
|
|
size_t rx_remaining = len, tx_remaining = len;
|
|
|
|
while (rx_remaining || tx_remaining) {
|
|
if (tx_remaining && spi_is_writable(spi) && rx_remaining - tx_remaining < fifo_depth) {
|
|
spi_get_hw(spi)->dr = (uint32_t) repeated_tx_data;
|
|
--tx_remaining;
|
|
}
|
|
if (rx_remaining && spi_is_readable(spi)) {
|
|
*dst++ = (uint16_t) spi_get_hw(spi)->dr;
|
|
--rx_remaining;
|
|
}
|
|
}
|
|
|
|
return (int)len;
|
|
}
|