This is most useful in combination with round-robin sampling to avoid having to track it manually.
258 lines
8.0 KiB
C
258 lines
8.0 KiB
C
/*
|
|
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
|
|
*
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*/
|
|
|
|
#ifndef _HARDWARE_ADC_H_
|
|
#define _HARDWARE_ADC_H_
|
|
|
|
#include "pico.h"
|
|
#include "hardware/structs/adc.h"
|
|
#include "hardware/gpio.h"
|
|
|
|
/** \file hardware/adc.h
|
|
* \defgroup hardware_adc hardware_adc
|
|
*
|
|
* Analog to Digital Converter (ADC) API
|
|
*
|
|
* The RP2040 has an internal analogue-digital converter (ADC) with the following features:
|
|
* - SAR ADC
|
|
* - 500 kS/s (Using an independent 48MHz clock)
|
|
* - 12 bit (9.5 ENOB)
|
|
* - 5 input mux:
|
|
* - 4 inputs that are available on package pins shared with GPIO[29:26]
|
|
* - 1 input is dedicated to the internal temperature sensor
|
|
* - 4 element receive sample FIFO
|
|
* - Interrupt generation
|
|
* - DMA interface
|
|
*
|
|
* Although there is only one ADC you can specify the input to it using the adc_select_input() function.
|
|
* In round robin mode (adc_rrobin()) will use that input and move to the next one after a read.
|
|
*
|
|
* User ADC inputs are on 0-3 (GPIO 26-29), the temperature sensor is on input 4.
|
|
*
|
|
* Temperature sensor values can be approximated in centigrade as:
|
|
*
|
|
* T = 27 - (ADC_Voltage - 0.706)/0.001721
|
|
*
|
|
* The FIFO, if used, can contain up to 4 entries.
|
|
*
|
|
* \subsection adc_example Example
|
|
* \addtogroup hardware_adc
|
|
*
|
|
* \include hello_adc.c
|
|
*/
|
|
|
|
// PICO_CONFIG: PARAM_ASSERTIONS_ENABLED_ADC, Enable/disable assertions in the ADC module, type=bool, default=0, group=hardware_adc
|
|
#ifndef PARAM_ASSERTIONS_ENABLED_ADC
|
|
#define PARAM_ASSERTIONS_ENABLED_ADC 0
|
|
#endif
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
/*! \brief Initialise the ADC HW
|
|
* \ingroup hardware_adc
|
|
*
|
|
*/
|
|
void adc_init(void);
|
|
|
|
/*! \brief Initialise the gpio for use as an ADC pin
|
|
* \ingroup hardware_adc
|
|
*
|
|
* Prepare a GPIO for use with ADC, by disabling all digital functions.
|
|
*
|
|
* \param gpio The GPIO number to use. Allowable GPIO numbers are 26 to 29 inclusive.
|
|
*/
|
|
static inline void adc_gpio_init(uint gpio) {
|
|
invalid_params_if(ADC, gpio < 26 || gpio > 29);
|
|
// Select NULL function to make output driver hi-Z
|
|
gpio_set_function(gpio, GPIO_FUNC_NULL);
|
|
// Also disable digital pulls and digital receiver
|
|
gpio_disable_pulls(gpio);
|
|
gpio_set_input_enabled(gpio, false);
|
|
}
|
|
|
|
/*! \brief ADC input select
|
|
* \ingroup hardware_adc
|
|
*
|
|
* Select an ADC input. 0...3 are GPIOs 26...29 respectively.
|
|
* Input 4 is the onboard temperature sensor.
|
|
*
|
|
* \param input Input to select.
|
|
*/
|
|
static inline void adc_select_input(uint input) {
|
|
valid_params_if(ADC, input < NUM_ADC_CHANNELS);
|
|
hw_write_masked(&adc_hw->cs, input << ADC_CS_AINSEL_LSB, ADC_CS_AINSEL_BITS);
|
|
}
|
|
|
|
/*! \brief Get the currently selected ADC input channel
|
|
* \ingroup hardware_adc
|
|
*
|
|
* \return The currently selected input channel. 0...3 are GPIOs 26...29 respectively. Input 4 is the onboard temperature sensor.
|
|
*/
|
|
static inline uint adc_get_selected_input(void) {
|
|
return (adc_hw->cs & ADC_CS_AINSEL_BITS) >> ADC_CS_AINSEL_LSB;
|
|
}
|
|
|
|
/*! \brief Round Robin sampling selector
|
|
* \ingroup hardware_adc
|
|
*
|
|
* This function sets which inputs are to be run through in round robin mode.
|
|
* Value between 0 and 0x1f (bit 0 to bit 4 for GPIO 26 to 29 and temperature sensor input respectively)
|
|
*
|
|
* \param input_mask A bit pattern indicating which of the 5 inputs are to be sampled. Write a value of 0 to disable round robin sampling.
|
|
*/
|
|
static inline void adc_set_round_robin(uint input_mask) {
|
|
invalid_params_if(ADC, input_mask & ~ADC_CS_RROBIN_BITS);
|
|
hw_write_masked(&adc_hw->cs, input_mask << ADC_CS_RROBIN_LSB, ADC_CS_RROBIN_BITS);
|
|
}
|
|
|
|
/*! \brief Enable the onboard temperature sensor
|
|
* \ingroup hardware_adc
|
|
*
|
|
* \param enable Set true to power on the onboard temperature sensor, false to power off.
|
|
*
|
|
*/
|
|
static inline void adc_set_temp_sensor_enabled(bool enable) {
|
|
if (enable)
|
|
hw_set_bits(&adc_hw->cs, ADC_CS_TS_EN_BITS);
|
|
else
|
|
hw_clear_bits(&adc_hw->cs, ADC_CS_TS_EN_BITS);
|
|
}
|
|
|
|
/*! \brief Perform a single conversion
|
|
* \ingroup hardware_adc
|
|
*
|
|
* Performs an ADC conversion, waits for the result, and then returns it.
|
|
*
|
|
* \return Result of the conversion.
|
|
*/
|
|
static inline uint16_t adc_read(void) {
|
|
hw_set_bits(&adc_hw->cs, ADC_CS_START_ONCE_BITS);
|
|
|
|
while (!(adc_hw->cs & ADC_CS_READY_BITS))
|
|
tight_loop_contents();
|
|
|
|
return (uint16_t) adc_hw->result;
|
|
}
|
|
|
|
/*! \brief Enable or disable free-running sampling mode
|
|
* \ingroup hardware_adc
|
|
*
|
|
* \param run false to disable, true to enable free running conversion mode.
|
|
*/
|
|
static inline void adc_run(bool run) {
|
|
if (run)
|
|
hw_set_bits(&adc_hw->cs, ADC_CS_START_MANY_BITS);
|
|
else
|
|
hw_clear_bits(&adc_hw->cs, ADC_CS_START_MANY_BITS);
|
|
}
|
|
|
|
/*! \brief Set the ADC Clock divisor
|
|
* \ingroup hardware_adc
|
|
*
|
|
* Period of samples will be (1 + div) cycles on average. Note it takes 96 cycles to perform a conversion,
|
|
* so any period less than that will be clamped to 96.
|
|
*
|
|
* \param clkdiv If non-zero, conversion will be started at intervals rather than back to back.
|
|
*/
|
|
static inline void adc_set_clkdiv(float clkdiv) {
|
|
invalid_params_if(ADC, clkdiv >= 1 << (ADC_DIV_INT_MSB - ADC_DIV_INT_LSB + 1));
|
|
adc_hw->div = (uint32_t)(clkdiv * (float) (1 << ADC_DIV_INT_LSB));
|
|
}
|
|
|
|
/*! \brief Setup the ADC FIFO
|
|
* \ingroup hardware_adc
|
|
*
|
|
* FIFO is 4 samples long, if a conversion is completed and the FIFO is full the result is dropped.
|
|
*
|
|
* \param en Enables write each conversion result to the FIFO
|
|
* \param dreq_en Enable DMA requests when FIFO contains data
|
|
* \param dreq_thresh Threshold for DMA requests/FIFO IRQ if enabled.
|
|
* \param err_in_fifo If enabled, bit 15 of the FIFO contains error flag for each sample
|
|
* \param byte_shift Shift FIFO contents to be one byte in size (for byte DMA) - enables DMA to byte buffers.
|
|
*/
|
|
static inline void adc_fifo_setup(bool en, bool dreq_en, uint16_t dreq_thresh, bool err_in_fifo, bool byte_shift) {
|
|
hw_write_masked(&adc_hw->fcs,
|
|
(bool_to_bit(en) << ADC_FCS_EN_LSB) |
|
|
(bool_to_bit(dreq_en) << ADC_FCS_DREQ_EN_LSB) |
|
|
(((uint)dreq_thresh) << ADC_FCS_THRESH_LSB) |
|
|
(bool_to_bit(err_in_fifo) << ADC_FCS_ERR_LSB) |
|
|
(bool_to_bit(byte_shift) << ADC_FCS_SHIFT_LSB),
|
|
ADC_FCS_EN_BITS |
|
|
ADC_FCS_DREQ_EN_BITS |
|
|
ADC_FCS_THRESH_BITS |
|
|
ADC_FCS_ERR_BITS |
|
|
ADC_FCS_SHIFT_BITS
|
|
);
|
|
}
|
|
|
|
/*! \brief Check FIFO empty state
|
|
* \ingroup hardware_adc
|
|
*
|
|
* \return Returns true if the fifo is empty
|
|
*/
|
|
static inline bool adc_fifo_is_empty(void) {
|
|
return !!(adc_hw->fcs & ADC_FCS_EMPTY_BITS);
|
|
}
|
|
|
|
/*! \brief Get number of entries in the ADC FIFO
|
|
* \ingroup hardware_adc
|
|
*
|
|
* The ADC FIFO is 4 entries long. This function will return how many samples are currently present.
|
|
*/
|
|
static inline uint8_t adc_fifo_get_level(void) {
|
|
return (adc_hw->fcs & ADC_FCS_LEVEL_BITS) >> ADC_FCS_LEVEL_LSB;
|
|
}
|
|
|
|
/*! \brief Get ADC result from FIFO
|
|
* \ingroup hardware_adc
|
|
*
|
|
* Pops the latest result from the ADC FIFO.
|
|
*/
|
|
static inline uint16_t adc_fifo_get(void) {
|
|
return (uint16_t)adc_hw->fifo;
|
|
}
|
|
|
|
/*! \brief Wait for the ADC FIFO to have data.
|
|
* \ingroup hardware_adc
|
|
*
|
|
* Blocks until data is present in the FIFO
|
|
*/
|
|
static inline uint16_t adc_fifo_get_blocking(void) {
|
|
while (adc_fifo_is_empty())
|
|
tight_loop_contents();
|
|
return (uint16_t)adc_hw->fifo;
|
|
}
|
|
|
|
/*! \brief Drain the ADC FIFO
|
|
* \ingroup hardware_adc
|
|
*
|
|
* Will wait for any conversion to complete then drain the FIFO discarding any results.
|
|
*/
|
|
static inline void adc_fifo_drain(void) {
|
|
// Potentially there is still a conversion in progress -- wait for this to complete before draining
|
|
while (!(adc_hw->cs & ADC_CS_READY_BITS))
|
|
tight_loop_contents();
|
|
while (!adc_fifo_is_empty())
|
|
(void) adc_fifo_get();
|
|
}
|
|
|
|
/*! \brief Enable/Disable ADC interrupts.
|
|
* \ingroup hardware_adc
|
|
*
|
|
* \param enabled Set to true to enable the ADC interrupts, false to disable
|
|
*/
|
|
static inline void adc_irq_set_enabled(bool enabled) {
|
|
adc_hw->inte = !!enabled;
|
|
}
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif
|