Use auto-generated hardware/structs/ headers (based off SVD) SVD errors fixed.

This commit is contained in:
Graham Sanderson 2021-10-12 09:15:19 -05:00 committed by GitHub
parent a793222331
commit 2f2e62968d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
34 changed files with 3189 additions and 299 deletions

View File

@ -28,10 +28,11 @@
#define NUM_UARTS _u(2)
#define NUM_I2CS _u(2)
#define NUM_SPIS _u(2)
#define NUM_TIMERS _u(4)
#define NUM_ADC_CHANNELS _u(5)
#define NUM_BANK0_GPIOS _u(30)
#define NUM_QSPI_GPIOS _u(6)
#define PIO_INSTRUCTION_COUNT _u(32)

View File

@ -1,27 +1,90 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
* Copyright (c) 2021 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_ADC_H
#define _HARDWARE_STRUCTS_ADC_H
#include "hardware/address_mapped.h"
#include "hardware/regs/adc.h"
typedef struct {
io_rw_32 cs;
io_rw_32 result;
io_rw_32 fcs;
io_rw_32 fifo;
io_rw_32 div;
io_rw_32 intr;
io_rw_32 inte;
io_rw_32 intf;
io_rw_32 ints;
} adc_hw_t;
// Reference to datasheet: https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf#tab-registerlist_adc
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/adc.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE]: FIELDNAME (RESETVALUE): DESCRIPTION
check_hw_layout(adc_hw_t, ints, ADC_INTS_OFFSET);
typedef struct {
_REG_(ADC_CS_OFFSET) // ADC_CS
// ADC Control and Status
// 0x001f0000 [20:16] : RROBIN (0): Round-robin sampling
// 0x00007000 [14:12] : AINSEL (0): Select analog mux input
// 0x00000400 [10] : ERR_STICKY (0): Some past ADC conversion encountered an error
// 0x00000200 [9] : ERR (0): The most recent ADC conversion encountered an error; result is undefined or noisy
// 0x00000100 [8] : READY (0): 1 if the ADC is ready to start a new conversion
// 0x00000008 [3] : START_MANY (0): Continuously perform conversions whilst this bit is 1
// 0x00000004 [2] : START_ONCE (0): Start a single conversion
// 0x00000002 [1] : TS_EN (0): Power on temperature sensor
// 0x00000001 [0] : EN (0): Power on ADC and enable its clock
io_rw_32 cs;
_REG_(ADC_RESULT_OFFSET) // ADC_RESULT
// Result of most recent ADC conversion
// 0x00000fff [11:0] : RESULT (0)
io_ro_32 result;
_REG_(ADC_FCS_OFFSET) // ADC_FCS
// FIFO control and status
// 0x0f000000 [27:24] : THRESH (0): DREQ/IRQ asserted when level >= threshold
// 0x000f0000 [19:16] : LEVEL (0): The number of conversion results currently waiting in the FIFO
// 0x00000800 [11] : OVER (0): 1 if the FIFO has been overflowed
// 0x00000400 [10] : UNDER (0): 1 if the FIFO has been underflowed
// 0x00000200 [9] : FULL (0)
// 0x00000100 [8] : EMPTY (0)
// 0x00000008 [3] : DREQ_EN (0): If 1: assert DMA requests when FIFO contains data
// 0x00000004 [2] : ERR (0): If 1: conversion error bit appears in the FIFO alongside the result
// 0x00000002 [1] : SHIFT (0): If 1: FIFO results are right-shifted to be one byte in size
// 0x00000001 [0] : EN (0): If 1: write result to the FIFO after each conversion
io_rw_32 fcs;
_REG_(ADC_FIFO_OFFSET) // ADC_FIFO
// Conversion result FIFO
// 0x00008000 [15] : ERR (0): 1 if this particular sample experienced a conversion error
// 0x00000fff [11:0] : VAL (0)
io_ro_32 fifo;
_REG_(ADC_DIV_OFFSET) // ADC_DIV
// Clock divider
// 0x00ffff00 [23:8] : INT (0): Integer part of clock divisor
// 0x000000ff [7:0] : FRAC (0): Fractional part of clock divisor
io_rw_32 div;
_REG_(ADC_INTR_OFFSET) // ADC_INTR
// Raw Interrupts
// 0x00000001 [0] : FIFO (0): Triggered when the sample FIFO reaches a certain level
io_ro_32 intr;
_REG_(ADC_INTE_OFFSET) // ADC_INTE
// Interrupt Enable
// 0x00000001 [0] : FIFO (0): Triggered when the sample FIFO reaches a certain level
io_rw_32 inte;
_REG_(ADC_INTF_OFFSET) // ADC_INTF
// Interrupt Force
// 0x00000001 [0] : FIFO (0): Triggered when the sample FIFO reaches a certain level
io_rw_32 intf;
_REG_(ADC_INTS_OFFSET) // ADC_INTS
// Interrupt status after masking & forcing
// 0x00000001 [0] : FIFO (0): Triggered when the sample FIFO reaches a certain level
io_ro_32 ints;
} adc_hw_t;
#define adc_hw ((adc_hw_t *const)ADC_BASE)

View File

@ -1,14 +1,25 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
* Copyright (c) 2021 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_BUS_CTRL_H
#define _HARDWARE_STRUCTS_BUS_CTRL_H
#include "hardware/address_mapped.h"
#include "hardware/regs/busctrl.h"
// Reference to datasheet: https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf#tab-registerlist_busctrl
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/busctrl.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE]: FIELDNAME (RESETVALUE): DESCRIPTION
enum bus_ctrl_perf_counter {
arbiter_rom_perf_event_access = 19,
arbiter_rom_perf_event_access_contested = 18,
@ -33,15 +44,33 @@ enum bus_ctrl_perf_counter {
};
typedef struct {
io_rw_32 priority;
io_ro_32 priority_ack;
struct {
io_rw_32 value;
io_rw_32 sel;
} counter[4];
} bus_ctrl_hw_t;
_REG_(BUSCTRL_PERFCTR0_OFFSET) // BUSCTRL_PERFCTR0
// Bus fabric performance counter 0
// 0x00ffffff [23:0] : PERFCTR0 (0): Busfabric saturating performance counter 0
io_rw_32 value;
check_hw_layout(bus_ctrl_hw_t, counter[0].value, BUSCTRL_PERFCTR0_OFFSET);
_REG_(BUSCTRL_PERFSEL0_OFFSET) // BUSCTRL_PERFSEL0
// Bus fabric performance event select for PERFCTR0
// 0x0000001f [4:0] : PERFSEL0 (0x1f): Select an event for PERFCTR0
io_rw_32 sel;
} bus_ctrl_perf_hw_t;
typedef struct {
_REG_(BUSCTRL_BUS_PRIORITY_OFFSET) // BUSCTRL_BUS_PRIORITY
// Set the priority of each master for bus arbitration
// 0x00001000 [12] : DMA_W (0): 0 - low priority, 1 - high priority
// 0x00000100 [8] : DMA_R (0): 0 - low priority, 1 - high priority
// 0x00000010 [4] : PROC1 (0): 0 - low priority, 1 - high priority
// 0x00000001 [0] : PROC0 (0): 0 - low priority, 1 - high priority
io_rw_32 priority;
_REG_(BUSCTRL_BUS_PRIORITY_ACK_OFFSET) // BUSCTRL_BUS_PRIORITY_ACK
// Bus priority acknowledge
// 0x00000001 [0] : BUS_PRIORITY_ACK (0): Goes to 1 once all arbiters have registered the new global priority levels
io_ro_32 priority_ack;
bus_ctrl_perf_hw_t counter[4];
} bus_ctrl_hw_t;
#define bus_ctrl_hw ((bus_ctrl_hw_t *const)BUSCTRL_BASE)

View File

@ -1,5 +1,7 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
* Copyright (c) 2021 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
@ -8,9 +10,16 @@
#define _HARDWARE_STRUCTS_CLOCKS_H
#include "hardware/address_mapped.h"
#include "hardware/platform_defs.h"
#include "hardware/regs/clocks.h"
// Reference to datasheet: https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf#tab-registerlist_clocks
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/clocks.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE]: FIELDNAME (RESETVALUE): DESCRIPTION
/*! \brief Enumeration identifying a hardware clock
* \ingroup hardware_clocks
*/
@ -32,41 +41,286 @@ enum clock_index {
/// \tag::clock_hw[]
typedef struct {
_REG_(CLOCKS_CLK_GPOUT0_CTRL_OFFSET) // CLOCKS_CLK_GPOUT0_CTRL
// Clock control, can be changed on-the-fly (except for auxsrc)
// 0x00100000 [20] : NUDGE (0): An edge on this signal shifts the phase of the output by 1 cycle of the input clock
// 0x00030000 [17:16] : PHASE (0): This delays the enable signal by up to 3 cycles of the input clock
// 0x00001000 [12] : DC50 (0): Enables duty cycle correction for odd divisors
// 0x00000800 [11] : ENABLE (0): Starts and stops the clock generator cleanly
// 0x00000400 [10] : KILL (0): Asynchronously kills the clock generator
// 0x000001e0 [8:5] : AUXSRC (0): Selects the auxiliary clock source, will glitch when switching
io_rw_32 ctrl;
_REG_(CLOCKS_CLK_GPOUT0_DIV_OFFSET) // CLOCKS_CLK_GPOUT0_DIV
// Clock divisor, can be changed on-the-fly
// 0xffffff00 [31:8] : INT (1): Integer component of the divisor, 0 -> divide by 2^16
// 0x000000ff [7:0] : FRAC (0): Fractional component of the divisor
io_rw_32 div;
io_rw_32 selected;
_REG_(CLOCKS_CLK_GPOUT0_SELECTED_OFFSET) // CLOCKS_CLK_GPOUT0_SELECTED
// Indicates which SRC is currently selected by the glitchless mux (one-hot)
io_ro_32 selected;
} clock_hw_t;
/// \end::clock_hw[]
typedef struct {
io_rw_32 ref_khz;
io_rw_32 min_khz;
io_rw_32 max_khz;
io_rw_32 delay;
io_rw_32 interval;
io_rw_32 src;
_REG_(CLOCKS_CLK_SYS_RESUS_CTRL_OFFSET) // CLOCKS_CLK_SYS_RESUS_CTRL
// 0x00010000 [16] : CLEAR (0): For clearing the resus after the fault that triggered it has been corrected
// 0x00001000 [12] : FRCE (0): Force a resus, for test purposes only
// 0x00000100 [8] : ENABLE (0): Enable resus
// 0x000000ff [7:0] : TIMEOUT (0xff): This is expressed as a number of clk_ref cycles
io_rw_32 ctrl;
_REG_(CLOCKS_CLK_SYS_RESUS_STATUS_OFFSET) // CLOCKS_CLK_SYS_RESUS_STATUS
// 0x00000001 [0] : RESUSSED (0): Clock has been resuscitated, correct the error then send ctrl_clear=1
io_ro_32 status;
} clock_resus_hw_t;
typedef struct {
_REG_(CLOCKS_FC0_REF_KHZ_OFFSET) // CLOCKS_FC0_REF_KHZ
// Reference clock frequency in kHz
// 0x000fffff [19:0] : FC0_REF_KHZ (0)
io_rw_32 ref_khz;
_REG_(CLOCKS_FC0_MIN_KHZ_OFFSET) // CLOCKS_FC0_MIN_KHZ
// Minimum pass frequency in kHz
// 0x01ffffff [24:0] : FC0_MIN_KHZ (0)
io_rw_32 min_khz;
_REG_(CLOCKS_FC0_MAX_KHZ_OFFSET) // CLOCKS_FC0_MAX_KHZ
// Maximum pass frequency in kHz
// 0x01ffffff [24:0] : FC0_MAX_KHZ (0x1ffffff)
io_rw_32 max_khz;
_REG_(CLOCKS_FC0_DELAY_OFFSET) // CLOCKS_FC0_DELAY
// Delays the start of frequency counting to allow the mux to settle
// 0x00000007 [2:0] : FC0_DELAY (1)
io_rw_32 delay;
_REG_(CLOCKS_FC0_INTERVAL_OFFSET) // CLOCKS_FC0_INTERVAL
// The test interval is 0
// 0x0000000f [3:0] : FC0_INTERVAL (0x8)
io_rw_32 interval;
_REG_(CLOCKS_FC0_SRC_OFFSET) // CLOCKS_FC0_SRC
// Clock sent to frequency counter, set to 0 when not required
// 0x000000ff [7:0] : FC0_SRC (0)
io_rw_32 src;
_REG_(CLOCKS_FC0_STATUS_OFFSET) // CLOCKS_FC0_STATUS
// Frequency counter status
// 0x10000000 [28] : DIED (0): Test clock stopped during test
// 0x01000000 [24] : FAST (0): Test clock faster than expected, only valid when status_done=1
// 0x00100000 [20] : SLOW (0): Test clock slower than expected, only valid when status_done=1
// 0x00010000 [16] : FAIL (0): Test failed
// 0x00001000 [12] : WAITING (0): Waiting for test clock to start
// 0x00000100 [8] : RUNNING (0): Test running
// 0x00000010 [4] : DONE (0): Test complete
// 0x00000001 [0] : PASS (0): Test passed
io_ro_32 status;
_REG_(CLOCKS_FC0_RESULT_OFFSET) // CLOCKS_FC0_RESULT
// Result of frequency measurement, only valid when status_done=1
// 0x3fffffe0 [29:5] : KHZ (0)
// 0x0000001f [4:0] : FRAC (0)
io_ro_32 result;
} fc_hw_t;
typedef struct {
clock_hw_t clk[CLK_COUNT];
struct {
io_rw_32 ctrl;
io_rw_32 status;
} resus;
clock_hw_t clk[CLK_COUNT]; // 10
clock_resus_hw_t resus;
fc_hw_t fc0;
_REG_(CLOCKS_WAKE_EN0_OFFSET) // CLOCKS_WAKE_EN0
// enable clock in wake mode
// 0x80000000 [31] : clk_sys_sram3 (1)
// 0x40000000 [30] : clk_sys_sram2 (1)
// 0x20000000 [29] : clk_sys_sram1 (1)
// 0x10000000 [28] : clk_sys_sram0 (1)
// 0x08000000 [27] : clk_sys_spi1 (1)
// 0x04000000 [26] : clk_peri_spi1 (1)
// 0x02000000 [25] : clk_sys_spi0 (1)
// 0x01000000 [24] : clk_peri_spi0 (1)
// 0x00800000 [23] : clk_sys_sio (1)
// 0x00400000 [22] : clk_sys_rtc (1)
// 0x00200000 [21] : clk_rtc_rtc (1)
// 0x00100000 [20] : clk_sys_rosc (1)
// 0x00080000 [19] : clk_sys_rom (1)
// 0x00040000 [18] : clk_sys_resets (1)
// 0x00020000 [17] : clk_sys_pwm (1)
// 0x00010000 [16] : clk_sys_psm (1)
// 0x00008000 [15] : clk_sys_pll_usb (1)
// 0x00004000 [14] : clk_sys_pll_sys (1)
// 0x00002000 [13] : clk_sys_pio1 (1)
// 0x00001000 [12] : clk_sys_pio0 (1)
// 0x00000800 [11] : clk_sys_pads (1)
// 0x00000400 [10] : clk_sys_vreg_and_chip_reset (1)
// 0x00000200 [9] : clk_sys_jtag (1)
// 0x00000100 [8] : clk_sys_io (1)
// 0x00000080 [7] : clk_sys_i2c1 (1)
// 0x00000040 [6] : clk_sys_i2c0 (1)
// 0x00000020 [5] : clk_sys_dma (1)
// 0x00000010 [4] : clk_sys_busfabric (1)
// 0x00000008 [3] : clk_sys_busctrl (1)
// 0x00000004 [2] : clk_sys_adc (1)
// 0x00000002 [1] : clk_adc_adc (1)
// 0x00000001 [0] : clk_sys_clocks (1)
io_rw_32 wake_en0;
_REG_(CLOCKS_WAKE_EN1_OFFSET) // CLOCKS_WAKE_EN1
// enable clock in wake mode
// 0x00004000 [14] : clk_sys_xosc (1)
// 0x00002000 [13] : clk_sys_xip (1)
// 0x00001000 [12] : clk_sys_watchdog (1)
// 0x00000800 [11] : clk_usb_usbctrl (1)
// 0x00000400 [10] : clk_sys_usbctrl (1)
// 0x00000200 [9] : clk_sys_uart1 (1)
// 0x00000100 [8] : clk_peri_uart1 (1)
// 0x00000080 [7] : clk_sys_uart0 (1)
// 0x00000040 [6] : clk_peri_uart0 (1)
// 0x00000020 [5] : clk_sys_timer (1)
// 0x00000010 [4] : clk_sys_tbman (1)
// 0x00000008 [3] : clk_sys_sysinfo (1)
// 0x00000004 [2] : clk_sys_syscfg (1)
// 0x00000002 [1] : clk_sys_sram5 (1)
// 0x00000001 [0] : clk_sys_sram4 (1)
io_rw_32 wake_en1;
_REG_(CLOCKS_SLEEP_EN0_OFFSET) // CLOCKS_SLEEP_EN0
// enable clock in sleep mode
// 0x80000000 [31] : clk_sys_sram3 (1)
// 0x40000000 [30] : clk_sys_sram2 (1)
// 0x20000000 [29] : clk_sys_sram1 (1)
// 0x10000000 [28] : clk_sys_sram0 (1)
// 0x08000000 [27] : clk_sys_spi1 (1)
// 0x04000000 [26] : clk_peri_spi1 (1)
// 0x02000000 [25] : clk_sys_spi0 (1)
// 0x01000000 [24] : clk_peri_spi0 (1)
// 0x00800000 [23] : clk_sys_sio (1)
// 0x00400000 [22] : clk_sys_rtc (1)
// 0x00200000 [21] : clk_rtc_rtc (1)
// 0x00100000 [20] : clk_sys_rosc (1)
// 0x00080000 [19] : clk_sys_rom (1)
// 0x00040000 [18] : clk_sys_resets (1)
// 0x00020000 [17] : clk_sys_pwm (1)
// 0x00010000 [16] : clk_sys_psm (1)
// 0x00008000 [15] : clk_sys_pll_usb (1)
// 0x00004000 [14] : clk_sys_pll_sys (1)
// 0x00002000 [13] : clk_sys_pio1 (1)
// 0x00001000 [12] : clk_sys_pio0 (1)
// 0x00000800 [11] : clk_sys_pads (1)
// 0x00000400 [10] : clk_sys_vreg_and_chip_reset (1)
// 0x00000200 [9] : clk_sys_jtag (1)
// 0x00000100 [8] : clk_sys_io (1)
// 0x00000080 [7] : clk_sys_i2c1 (1)
// 0x00000040 [6] : clk_sys_i2c0 (1)
// 0x00000020 [5] : clk_sys_dma (1)
// 0x00000010 [4] : clk_sys_busfabric (1)
// 0x00000008 [3] : clk_sys_busctrl (1)
// 0x00000004 [2] : clk_sys_adc (1)
// 0x00000002 [1] : clk_adc_adc (1)
// 0x00000001 [0] : clk_sys_clocks (1)
io_rw_32 sleep_en0;
_REG_(CLOCKS_SLEEP_EN1_OFFSET) // CLOCKS_SLEEP_EN1
// enable clock in sleep mode
// 0x00004000 [14] : clk_sys_xosc (1)
// 0x00002000 [13] : clk_sys_xip (1)
// 0x00001000 [12] : clk_sys_watchdog (1)
// 0x00000800 [11] : clk_usb_usbctrl (1)
// 0x00000400 [10] : clk_sys_usbctrl (1)
// 0x00000200 [9] : clk_sys_uart1 (1)
// 0x00000100 [8] : clk_peri_uart1 (1)
// 0x00000080 [7] : clk_sys_uart0 (1)
// 0x00000040 [6] : clk_peri_uart0 (1)
// 0x00000020 [5] : clk_sys_timer (1)
// 0x00000010 [4] : clk_sys_tbman (1)
// 0x00000008 [3] : clk_sys_sysinfo (1)
// 0x00000004 [2] : clk_sys_syscfg (1)
// 0x00000002 [1] : clk_sys_sram5 (1)
// 0x00000001 [0] : clk_sys_sram4 (1)
io_rw_32 sleep_en1;
io_rw_32 enabled0;
io_rw_32 enabled1;
io_rw_32 intr;
_REG_(CLOCKS_ENABLED0_OFFSET) // CLOCKS_ENABLED0
// indicates the state of the clock enable
// 0x80000000 [31] : clk_sys_sram3 (0)
// 0x40000000 [30] : clk_sys_sram2 (0)
// 0x20000000 [29] : clk_sys_sram1 (0)
// 0x10000000 [28] : clk_sys_sram0 (0)
// 0x08000000 [27] : clk_sys_spi1 (0)
// 0x04000000 [26] : clk_peri_spi1 (0)
// 0x02000000 [25] : clk_sys_spi0 (0)
// 0x01000000 [24] : clk_peri_spi0 (0)
// 0x00800000 [23] : clk_sys_sio (0)
// 0x00400000 [22] : clk_sys_rtc (0)
// 0x00200000 [21] : clk_rtc_rtc (0)
// 0x00100000 [20] : clk_sys_rosc (0)
// 0x00080000 [19] : clk_sys_rom (0)
// 0x00040000 [18] : clk_sys_resets (0)
// 0x00020000 [17] : clk_sys_pwm (0)
// 0x00010000 [16] : clk_sys_psm (0)
// 0x00008000 [15] : clk_sys_pll_usb (0)
// 0x00004000 [14] : clk_sys_pll_sys (0)
// 0x00002000 [13] : clk_sys_pio1 (0)
// 0x00001000 [12] : clk_sys_pio0 (0)
// 0x00000800 [11] : clk_sys_pads (0)
// 0x00000400 [10] : clk_sys_vreg_and_chip_reset (0)
// 0x00000200 [9] : clk_sys_jtag (0)
// 0x00000100 [8] : clk_sys_io (0)
// 0x00000080 [7] : clk_sys_i2c1 (0)
// 0x00000040 [6] : clk_sys_i2c0 (0)
// 0x00000020 [5] : clk_sys_dma (0)
// 0x00000010 [4] : clk_sys_busfabric (0)
// 0x00000008 [3] : clk_sys_busctrl (0)
// 0x00000004 [2] : clk_sys_adc (0)
// 0x00000002 [1] : clk_adc_adc (0)
// 0x00000001 [0] : clk_sys_clocks (0)
io_ro_32 enabled0;
_REG_(CLOCKS_ENABLED1_OFFSET) // CLOCKS_ENABLED1
// indicates the state of the clock enable
// 0x00004000 [14] : clk_sys_xosc (0)
// 0x00002000 [13] : clk_sys_xip (0)
// 0x00001000 [12] : clk_sys_watchdog (0)
// 0x00000800 [11] : clk_usb_usbctrl (0)
// 0x00000400 [10] : clk_sys_usbctrl (0)
// 0x00000200 [9] : clk_sys_uart1 (0)
// 0x00000100 [8] : clk_peri_uart1 (0)
// 0x00000080 [7] : clk_sys_uart0 (0)
// 0x00000040 [6] : clk_peri_uart0 (0)
// 0x00000020 [5] : clk_sys_timer (0)
// 0x00000010 [4] : clk_sys_tbman (0)
// 0x00000008 [3] : clk_sys_sysinfo (0)
// 0x00000004 [2] : clk_sys_syscfg (0)
// 0x00000002 [1] : clk_sys_sram5 (0)
// 0x00000001 [0] : clk_sys_sram4 (0)
io_ro_32 enabled1;
_REG_(CLOCKS_INTR_OFFSET) // CLOCKS_INTR
// Raw Interrupts
// 0x00000001 [0] : CLK_SYS_RESUS (0)
io_ro_32 intr;
_REG_(CLOCKS_INTE_OFFSET) // CLOCKS_INTE
// Interrupt Enable
// 0x00000001 [0] : CLK_SYS_RESUS (0)
io_rw_32 inte;
_REG_(CLOCKS_INTF_OFFSET) // CLOCKS_INTF
// Interrupt Force
// 0x00000001 [0] : CLK_SYS_RESUS (0)
io_rw_32 intf;
io_rw_32 ints;
_REG_(CLOCKS_INTS_OFFSET) // CLOCKS_INTS
// Interrupt status after masking & forcing
// 0x00000001 [0] : CLK_SYS_RESUS (0)
io_ro_32 ints;
} clocks_hw_t;
#define clocks_hw ((clocks_hw_t *const)CLOCKS_BASE)
static_assert( CLK_COUNT == 10, "");
#endif

View File

@ -1,5 +1,7 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
* Copyright (c) 2021 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
@ -8,46 +10,175 @@
#define _HARDWARE_STRUCTS_DMA_H
#include "hardware/address_mapped.h"
#include "hardware/platform_defs.h"
#include "hardware/regs/dma.h"
typedef struct {
io_rw_32 read_addr;
io_rw_32 write_addr;
io_rw_32 transfer_count;
io_rw_32 ctrl_trig;
io_rw_32 al1_ctrl;
io_rw_32 al1_read_addr;
io_rw_32 al1_write_addr;
io_rw_32 al1_transfer_count_trig;
io_rw_32 al2_ctrl;
io_rw_32 al2_transfer_count;
io_rw_32 al2_read_addr;
io_rw_32 al2_write_addr_trig;
io_rw_32 al3_ctrl;
io_rw_32 al3_write_addr;
io_rw_32 al3_transfer_count;
io_rw_32 al3_read_addr_trig;
} dma_channel_hw_t;
// Reference to datasheet: https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf#tab-registerlist_dma
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/dma.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE]: FIELDNAME (RESETVALUE): DESCRIPTION
typedef struct {
dma_channel_hw_t ch[NUM_DMA_CHANNELS];
uint32_t _pad0[16 * (16 - NUM_DMA_CHANNELS)];
_REG_(DMA_CH0_READ_ADDR_OFFSET) // DMA_CH0_READ_ADDR
// DMA Channel 0 Read Address pointer
io_rw_32 read_addr;
_REG_(DMA_CH0_WRITE_ADDR_OFFSET) // DMA_CH0_WRITE_ADDR
// DMA Channel 0 Write Address pointer
io_rw_32 write_addr;
_REG_(DMA_CH0_TRANS_COUNT_OFFSET) // DMA_CH0_TRANS_COUNT
// DMA Channel 0 Transfer Count
io_rw_32 transfer_count;
_REG_(DMA_CH0_CTRL_TRIG_OFFSET) // DMA_CH0_CTRL_TRIG
// DMA Channel 0 Control and Status
// 0x80000000 [31] : AHB_ERROR (0): Logical OR of the READ_ERROR and WRITE_ERROR flags
// 0x40000000 [30] : READ_ERROR (0): If 1, the channel received a read bus error
// 0x20000000 [29] : WRITE_ERROR (0): If 1, the channel received a write bus error
// 0x01000000 [24] : BUSY (0): This flag goes high when the channel starts a new transfer sequence, and low when the...
// 0x00800000 [23] : SNIFF_EN (0): If 1, this channel's data transfers are visible to the sniff hardware, and each...
// 0x00400000 [22] : BSWAP (0): Apply byte-swap transformation to DMA data
// 0x00200000 [21] : IRQ_QUIET (0): In QUIET mode, the channel does not generate IRQs at the end of every transfer block
// 0x001f8000 [20:15] : TREQ_SEL (0): Select a Transfer Request signal
// 0x00007800 [14:11] : CHAIN_TO (0): When this channel completes, it will trigger the channel indicated by CHAIN_TO
// 0x00000400 [10] : RING_SEL (0): Select whether RING_SIZE applies to read or write addresses
// 0x000003c0 [9:6] : RING_SIZE (0): Size of address wrap region
// 0x00000020 [5] : INCR_WRITE (0): If 1, the write address increments with each transfer
// 0x00000010 [4] : INCR_READ (0): If 1, the read address increments with each transfer
// 0x0000000c [3:2] : DATA_SIZE (0): Set the size of each bus transfer (byte/halfword/word)
// 0x00000002 [1] : HIGH_PRIORITY (0): HIGH_PRIORITY gives a channel preferential treatment in issue scheduling: in...
// 0x00000001 [0] : EN (0): DMA Channel Enable
io_rw_32 ctrl_trig;
_REG_(DMA_CH0_AL1_CTRL_OFFSET) // DMA_CH0_AL1_CTRL
// Alias for channel 0 CTRL register
io_rw_32 al1_ctrl;
_REG_(DMA_CH0_AL1_READ_ADDR_OFFSET) // DMA_CH0_AL1_READ_ADDR
// Alias for channel 0 READ_ADDR register
io_rw_32 al1_read_addr;
_REG_(DMA_CH0_AL1_WRITE_ADDR_OFFSET) // DMA_CH0_AL1_WRITE_ADDR
// Alias for channel 0 WRITE_ADDR register
io_rw_32 al1_write_addr;
_REG_(DMA_CH0_AL1_TRANS_COUNT_TRIG_OFFSET) // DMA_CH0_AL1_TRANS_COUNT_TRIG
// Alias for channel 0 TRANS_COUNT register
io_rw_32 al1_transfer_count_trig;
_REG_(DMA_CH0_AL2_CTRL_OFFSET) // DMA_CH0_AL2_CTRL
// Alias for channel 0 CTRL register
io_rw_32 al2_ctrl;
_REG_(DMA_CH0_AL2_TRANS_COUNT_OFFSET) // DMA_CH0_AL2_TRANS_COUNT
// Alias for channel 0 TRANS_COUNT register
io_rw_32 al2_transfer_count;
_REG_(DMA_CH0_AL2_READ_ADDR_OFFSET) // DMA_CH0_AL2_READ_ADDR
// Alias for channel 0 READ_ADDR register
io_rw_32 al2_read_addr;
_REG_(DMA_CH0_AL2_WRITE_ADDR_TRIG_OFFSET) // DMA_CH0_AL2_WRITE_ADDR_TRIG
// Alias for channel 0 WRITE_ADDR register
io_rw_32 al2_write_addr_trig;
_REG_(DMA_CH0_AL3_CTRL_OFFSET) // DMA_CH0_AL3_CTRL
// Alias for channel 0 CTRL register
io_rw_32 al3_ctrl;
_REG_(DMA_CH0_AL3_WRITE_ADDR_OFFSET) // DMA_CH0_AL3_WRITE_ADDR
// Alias for channel 0 WRITE_ADDR register
io_rw_32 al3_write_addr;
_REG_(DMA_CH0_AL3_TRANS_COUNT_OFFSET) // DMA_CH0_AL3_TRANS_COUNT
// Alias for channel 0 TRANS_COUNT register
io_rw_32 al3_transfer_count;
_REG_(DMA_CH0_AL3_READ_ADDR_TRIG_OFFSET) // DMA_CH0_AL3_READ_ADDR_TRIG
// Alias for channel 0 READ_ADDR register
io_rw_32 al3_read_addr_trig;
} dma_channel_hw_t;
typedef struct {
dma_channel_hw_t ch[NUM_DMA_CHANNELS]; // 12
uint32_t _pad0[64];
_REG_(DMA_INTR_OFFSET) // DMA_INTR
// Interrupt Status (raw)
// 0x0000ffff [15:0] : INTR (0): Raw interrupt status for DMA Channels 0
io_ro_32 intr;
_REG_(DMA_INTE0_OFFSET) // DMA_INTE0
// Interrupt Enables for IRQ 0
// 0x0000ffff [15:0] : INTE0 (0): Set bit n to pass interrupts from channel n to DMA IRQ 0
io_rw_32 inte0;
_REG_(DMA_INTF0_OFFSET) // DMA_INTF0
// Force Interrupts
// 0x0000ffff [15:0] : INTF0 (0): Write 1s to force the corresponding bits in INTE0
io_rw_32 intf0;
_REG_(DMA_INTS0_OFFSET) // DMA_INTS0
// Interrupt Status for IRQ 0
// 0x0000ffff [15:0] : INTS0 (0): Indicates active channel interrupt requests which are currently causing IRQ 0 to be asserted
io_rw_32 ints0;
uint32_t _pad1[1];
uint32_t _pad1;
_REG_(DMA_INTE1_OFFSET) // DMA_INTE1
// Interrupt Enables for IRQ 1
// 0x0000ffff [15:0] : INTE1 (0): Set bit n to pass interrupts from channel n to DMA IRQ 1
io_rw_32 inte1;
_REG_(DMA_INTF1_OFFSET) // DMA_INTF1
// Force Interrupts for IRQ 1
// 0x0000ffff [15:0] : INTF1 (0): Write 1s to force the corresponding bits in INTE0
io_rw_32 intf1;
_REG_(DMA_INTS1_OFFSET) // DMA_INTS1
// Interrupt Status (masked) for IRQ 1
// 0x0000ffff [15:0] : INTS1 (0): Indicates active channel interrupt requests which are currently causing IRQ 1 to be asserted
io_rw_32 ints1;
io_rw_32 timer[4];
io_wo_32 multi_channel_trigger;
_REG_(DMA_TIMER0_OFFSET) // DMA_TIMER0
io_rw_32 timer[NUM_DMA_TIMERS]; // 4
_REG_(DMA_MULTI_CHAN_TRIGGER_OFFSET) // DMA_MULTI_CHAN_TRIGGER
// Trigger one or more channels simultaneously
// 0x0000ffff [15:0] : MULTI_CHAN_TRIGGER (0): Each bit in this register corresponds to a DMA channel
io_rw_32 multi_channel_trigger;
_REG_(DMA_SNIFF_CTRL_OFFSET) // DMA_SNIFF_CTRL
// Sniffer Control
// 0x00000800 [11] : OUT_INV (0): If set, the result appears inverted (bitwise complement) when read
// 0x00000400 [10] : OUT_REV (0): If set, the result appears bit-reversed when read
// 0x00000200 [9] : BSWAP (0): Locally perform a byte reverse on the sniffed data, before feeding into checksum
// 0x000001e0 [8:5] : CALC (0)
// 0x0000001e [4:1] : DMACH (0): DMA channel for Sniffer to observe
// 0x00000001 [0] : EN (0): Enable sniffer
io_rw_32 sniff_ctrl;
_REG_(DMA_SNIFF_DATA_OFFSET) // DMA_SNIFF_DATA
// Data accumulator for sniff hardware
io_rw_32 sniff_data;
uint32_t _pad2[1];
uint32_t _pad2;
_REG_(DMA_FIFO_LEVELS_OFFSET) // DMA_FIFO_LEVELS
// Debug RAF, WAF, TDF levels
// 0x00ff0000 [23:16] : RAF_LVL (0): Current Read-Address-FIFO fill level
// 0x0000ff00 [15:8] : WAF_LVL (0): Current Write-Address-FIFO fill level
// 0x000000ff [7:0] : TDF_LVL (0): Current Transfer-Data-FIFO fill level
io_ro_32 fifo_levels;
io_wo_32 abort;
_REG_(DMA_CHAN_ABORT_OFFSET) // DMA_CHAN_ABORT
// Abort an in-progress transfer sequence on one or more channels
// 0x0000ffff [15:0] : CHAN_ABORT (0): Each bit corresponds to a channel
io_rw_32 abort;
} dma_hw_t;
typedef struct {
@ -61,4 +192,7 @@ typedef struct {
#define dma_hw ((dma_hw_t *const)DMA_BASE)
#define dma_debug_hw ((dma_debug_hw_t *const)(DMA_BASE + DMA_CH0_DBG_CTDREQ_OFFSET))
static_assert( NUM_DMA_TIMERS == 4, "");
static_assert( NUM_DMA_CHANNELS == 12, "");
#endif

View File

@ -1,5 +1,7 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
* Copyright (c) 2021 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
@ -10,125 +12,322 @@
#include "hardware/address_mapped.h"
#include "hardware/regs/i2c.h"
// Reference to datasheet: https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf#tab-registerlist_i2c
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/i2c.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE]: FIELDNAME (RESETVALUE): DESCRIPTION
typedef struct {
_REG_(I2C_IC_CON_OFFSET) // I2C_IC_CON
// I2C Control Register
// 0x00000400 [10] : STOP_DET_IF_MASTER_ACTIVE (0): Master issues the STOP_DET interrupt irrespective of whether...
// 0x00000200 [9] : RX_FIFO_FULL_HLD_CTRL (0): This bit controls whether DW_apb_i2c should hold the bus when the Rx...
// 0x00000100 [8] : TX_EMPTY_CTRL (0): This bit controls the generation of the TX_EMPTY interrupt, as described in...
// 0x00000080 [7] : STOP_DET_IFADDRESSED (0): In slave mode: - 1'b1: issues the STOP_DET interrupt only when it is...
// 0x00000040 [6] : IC_SLAVE_DISABLE (1): This bit controls whether I2C has its slave disabled, which means once...
// 0x00000020 [5] : IC_RESTART_EN (1): Determines whether RESTART conditions may be sent when acting as a master
// 0x00000010 [4] : IC_10BITADDR_MASTER (0): Controls whether the DW_apb_i2c starts its transfers in 7- or 10-bit...
// 0x00000008 [3] : IC_10BITADDR_SLAVE (0): When acting as a slave, this bit controls whether the DW_apb_i2c...
// 0x00000006 [2:1] : SPEED (0x2): These bits control at which speed the DW_apb_i2c operates; its setting is relevant...
// 0x00000001 [0] : MASTER_MODE (1): This bit controls whether the DW_apb_i2c master is enabled
io_rw_32 con;
_REG_(I2C_IC_TAR_OFFSET) // I2C_IC_TAR
// I2C Target Address Register
// 0x00000800 [11] : SPECIAL (0): This bit indicates whether software performs a Device-ID or General Call or START...
// 0x00000400 [10] : GC_OR_START (0): If bit 11 (SPECIAL) is set to 1 and bit 13(Device-ID) is set to 0, then this...
// 0x000003ff [9:0] : IC_TAR (0x55): This is the target address for any master transaction
io_rw_32 tar;
_REG_(I2C_IC_SAR_OFFSET) // I2C_IC_SAR
// I2C Slave Address Register
// 0x000003ff [9:0] : IC_SAR (0x55): The IC_SAR holds the slave address when the I2C is operating as a slave
io_rw_32 sar;
uint32_t _pad0;
_REG_(I2C_IC_DATA_CMD_OFFSET) // I2C_IC_DATA_CMD
// I2C Rx/Tx Data Buffer and Command Register; this is the register the CPU writes to when filling the TX FIFO and the...
// 0x00000800 [11] : FIRST_DATA_BYTE (0): Indicates the first data byte received after the address phase for receive...
// 0x00000400 [10] : RESTART (0): This bit controls whether a RESTART is issued before the byte is sent or received
// 0x00000200 [9] : STOP (0): This bit controls whether a STOP is issued after the byte is sent or received
// 0x00000100 [8] : CMD (0): This bit controls whether a read or a write is performed
// 0x000000ff [7:0] : DAT (0): This register contains the data to be transmitted or received on the I2C bus
io_rw_32 data_cmd;
_REG_(I2C_IC_SS_SCL_HCNT_OFFSET) // I2C_IC_SS_SCL_HCNT
// Standard Speed I2C Clock SCL High Count Register
// 0x0000ffff [15:0] : IC_SS_SCL_HCNT (0x28): This register must be set before any I2C bus transaction can take place...
io_rw_32 ss_scl_hcnt;
_REG_(I2C_IC_SS_SCL_LCNT_OFFSET) // I2C_IC_SS_SCL_LCNT
// Standard Speed I2C Clock SCL Low Count Register
// 0x0000ffff [15:0] : IC_SS_SCL_LCNT (0x2f): This register must be set before any I2C bus transaction can take place...
io_rw_32 ss_scl_lcnt;
_REG_(I2C_IC_FS_SCL_HCNT_OFFSET) // I2C_IC_FS_SCL_HCNT
// Fast Mode or Fast Mode Plus I2C Clock SCL High Count Register
// 0x0000ffff [15:0] : IC_FS_SCL_HCNT (0x6): This register must be set before any I2C bus transaction can take place...
io_rw_32 fs_scl_hcnt;
_REG_(I2C_IC_FS_SCL_LCNT_OFFSET) // I2C_IC_FS_SCL_LCNT
// Fast Mode or Fast Mode Plus I2C Clock SCL Low Count Register
// 0x0000ffff [15:0] : IC_FS_SCL_LCNT (0xd): This register must be set before any I2C bus transaction can take place...
io_rw_32 fs_scl_lcnt;
uint32_t _pad1[2];
io_rw_32 intr_stat;
_REG_(I2C_IC_INTR_STAT_OFFSET) // I2C_IC_INTR_STAT
// I2C Interrupt Status Register
// 0x00001000 [12] : R_RESTART_DET (0): See IC_RAW_INTR_STAT for a detailed description of R_RESTART_DET bit
// 0x00000800 [11] : R_GEN_CALL (0): See IC_RAW_INTR_STAT for a detailed description of R_GEN_CALL bit
// 0x00000400 [10] : R_START_DET (0): See IC_RAW_INTR_STAT for a detailed description of R_START_DET bit
// 0x00000200 [9] : R_STOP_DET (0): See IC_RAW_INTR_STAT for a detailed description of R_STOP_DET bit
// 0x00000100 [8] : R_ACTIVITY (0): See IC_RAW_INTR_STAT for a detailed description of R_ACTIVITY bit
// 0x00000080 [7] : R_RX_DONE (0): See IC_RAW_INTR_STAT for a detailed description of R_RX_DONE bit
// 0x00000040 [6] : R_TX_ABRT (0): See IC_RAW_INTR_STAT for a detailed description of R_TX_ABRT bit
// 0x00000020 [5] : R_RD_REQ (0): See IC_RAW_INTR_STAT for a detailed description of R_RD_REQ bit
// 0x00000010 [4] : R_TX_EMPTY (0): See IC_RAW_INTR_STAT for a detailed description of R_TX_EMPTY bit
// 0x00000008 [3] : R_TX_OVER (0): See IC_RAW_INTR_STAT for a detailed description of R_TX_OVER bit
// 0x00000004 [2] : R_RX_FULL (0): See IC_RAW_INTR_STAT for a detailed description of R_RX_FULL bit
// 0x00000002 [1] : R_RX_OVER (0): See IC_RAW_INTR_STAT for a detailed description of R_RX_OVER bit
// 0x00000001 [0] : R_RX_UNDER (0): See IC_RAW_INTR_STAT for a detailed description of R_RX_UNDER bit
io_ro_32 intr_stat;
_REG_(I2C_IC_INTR_MASK_OFFSET) // I2C_IC_INTR_MASK
// I2C Interrupt Mask Register
// 0x00001000 [12] : M_RESTART_DET (0): This bit masks the R_RESTART_DET interrupt in IC_INTR_STAT register
// 0x00000800 [11] : M_GEN_CALL (1): This bit masks the R_GEN_CALL interrupt in IC_INTR_STAT register
// 0x00000400 [10] : M_START_DET (0): This bit masks the R_START_DET interrupt in IC_INTR_STAT register
// 0x00000200 [9] : M_STOP_DET (0): This bit masks the R_STOP_DET interrupt in IC_INTR_STAT register
// 0x00000100 [8] : M_ACTIVITY (0): This bit masks the R_ACTIVITY interrupt in IC_INTR_STAT register
// 0x00000080 [7] : M_RX_DONE (1): This bit masks the R_RX_DONE interrupt in IC_INTR_STAT register
// 0x00000040 [6] : M_TX_ABRT (1): This bit masks the R_TX_ABRT interrupt in IC_INTR_STAT register
// 0x00000020 [5] : M_RD_REQ (1): This bit masks the R_RD_REQ interrupt in IC_INTR_STAT register
// 0x00000010 [4] : M_TX_EMPTY (1): This bit masks the R_TX_EMPTY interrupt in IC_INTR_STAT register
// 0x00000008 [3] : M_TX_OVER (1): This bit masks the R_TX_OVER interrupt in IC_INTR_STAT register
// 0x00000004 [2] : M_RX_FULL (1): This bit masks the R_RX_FULL interrupt in IC_INTR_STAT register
// 0x00000002 [1] : M_RX_OVER (1): This bit masks the R_RX_OVER interrupt in IC_INTR_STAT register
// 0x00000001 [0] : M_RX_UNDER (1): This bit masks the R_RX_UNDER interrupt in IC_INTR_STAT register
io_rw_32 intr_mask;
io_rw_32 raw_intr_stat;
_REG_(I2C_IC_RAW_INTR_STAT_OFFSET) // I2C_IC_RAW_INTR_STAT
// I2C Raw Interrupt Status Register
// 0x00001000 [12] : RESTART_DET (0): Indicates whether a RESTART condition has occurred on the I2C interface when...
// 0x00000800 [11] : GEN_CALL (0): Set only when a General Call address is received and it is acknowledged
// 0x00000400 [10] : START_DET (0): Indicates whether a START or RESTART condition has occurred on the I2C interface...
// 0x00000200 [9] : STOP_DET (0): Indicates whether a STOP condition has occurred on the I2C interface regardless...
// 0x00000100 [8] : ACTIVITY (0): This bit captures DW_apb_i2c activity and stays set until it is cleared
// 0x00000080 [7] : RX_DONE (0): When the DW_apb_i2c is acting as a slave-transmitter, this bit is set to 1 if the...
// 0x00000040 [6] : TX_ABRT (0): This bit indicates if DW_apb_i2c, as an I2C transmitter, is unable to complete the...
// 0x00000020 [5] : RD_REQ (0): This bit is set to 1 when DW_apb_i2c is acting as a slave and another I2C master is...
// 0x00000010 [4] : TX_EMPTY (0): The behavior of the TX_EMPTY interrupt status differs based on the TX_EMPTY_CTRL...
// 0x00000008 [3] : TX_OVER (0): Set during transmit if the transmit buffer is filled to IC_TX_BUFFER_DEPTH and the...
// 0x00000004 [2] : RX_FULL (0): Set when the receive buffer reaches or goes above the RX_TL threshold in the...
// 0x00000002 [1] : RX_OVER (0): Set if the receive buffer is completely filled to IC_RX_BUFFER_DEPTH and an...
// 0x00000001 [0] : RX_UNDER (0): Set if the processor attempts to read the receive buffer when it is empty by...
io_ro_32 raw_intr_stat;
_REG_(I2C_IC_RX_TL_OFFSET) // I2C_IC_RX_TL
// I2C Receive FIFO Threshold Register
// 0x000000ff [7:0] : RX_TL (0): Receive FIFO Threshold Level
io_rw_32 rx_tl;
_REG_(I2C_IC_TX_TL_OFFSET) // I2C_IC_TX_TL
// I2C Transmit FIFO Threshold Register
// 0x000000ff [7:0] : TX_TL (0): Transmit FIFO Threshold Level
io_rw_32 tx_tl;
io_rw_32 clr_intr;
io_rw_32 clr_rx_under;
io_rw_32 clr_rx_over;
io_rw_32 clr_tx_over;
io_rw_32 clr_rd_req;
io_rw_32 clr_tx_abrt;
io_rw_32 clr_rx_done;
io_rw_32 clr_activity;
io_rw_32 clr_stop_det;
io_rw_32 clr_start_det;
io_rw_32 clr_gen_call;
_REG_(I2C_IC_CLR_INTR_OFFSET) // I2C_IC_CLR_INTR
// Clear Combined and Individual Interrupt Register
// 0x00000001 [0] : CLR_INTR (0): Read this register to clear the combined interrupt, all individual interrupts,...
io_ro_32 clr_intr;
_REG_(I2C_IC_CLR_RX_UNDER_OFFSET) // I2C_IC_CLR_RX_UNDER
// Clear RX_UNDER Interrupt Register
// 0x00000001 [0] : CLR_RX_UNDER (0): Read this register to clear the RX_UNDER interrupt (bit 0) of the...
io_ro_32 clr_rx_under;
_REG_(I2C_IC_CLR_RX_OVER_OFFSET) // I2C_IC_CLR_RX_OVER
// Clear RX_OVER Interrupt Register
// 0x00000001 [0] : CLR_RX_OVER (0): Read this register to clear the RX_OVER interrupt (bit 1) of the...
io_ro_32 clr_rx_over;
_REG_(I2C_IC_CLR_TX_OVER_OFFSET) // I2C_IC_CLR_TX_OVER
// Clear TX_OVER Interrupt Register
// 0x00000001 [0] : CLR_TX_OVER (0): Read this register to clear the TX_OVER interrupt (bit 3) of the...
io_ro_32 clr_tx_over;
_REG_(I2C_IC_CLR_RD_REQ_OFFSET) // I2C_IC_CLR_RD_REQ
// Clear RD_REQ Interrupt Register
// 0x00000001 [0] : CLR_RD_REQ (0): Read this register to clear the RD_REQ interrupt (bit 5) of the...
io_ro_32 clr_rd_req;
_REG_(I2C_IC_CLR_TX_ABRT_OFFSET) // I2C_IC_CLR_TX_ABRT
// Clear TX_ABRT Interrupt Register
// 0x00000001 [0] : CLR_TX_ABRT (0): Read this register to clear the TX_ABRT interrupt (bit 6) of the...
io_ro_32 clr_tx_abrt;
_REG_(I2C_IC_CLR_RX_DONE_OFFSET) // I2C_IC_CLR_RX_DONE
// Clear RX_DONE Interrupt Register
// 0x00000001 [0] : CLR_RX_DONE (0): Read this register to clear the RX_DONE interrupt (bit 7) of the...
io_ro_32 clr_rx_done;
_REG_(I2C_IC_CLR_ACTIVITY_OFFSET) // I2C_IC_CLR_ACTIVITY
// Clear ACTIVITY Interrupt Register
// 0x00000001 [0] : CLR_ACTIVITY (0): Reading this register clears the ACTIVITY interrupt if the I2C is not active anymore
io_ro_32 clr_activity;
_REG_(I2C_IC_CLR_STOP_DET_OFFSET) // I2C_IC_CLR_STOP_DET
// Clear STOP_DET Interrupt Register
// 0x00000001 [0] : CLR_STOP_DET (0): Read this register to clear the STOP_DET interrupt (bit 9) of the...
io_ro_32 clr_stop_det;
_REG_(I2C_IC_CLR_START_DET_OFFSET) // I2C_IC_CLR_START_DET
// Clear START_DET Interrupt Register
// 0x00000001 [0] : CLR_START_DET (0): Read this register to clear the START_DET interrupt (bit 10) of the...
io_ro_32 clr_start_det;
_REG_(I2C_IC_CLR_GEN_CALL_OFFSET) // I2C_IC_CLR_GEN_CALL
// Clear GEN_CALL Interrupt Register
// 0x00000001 [0] : CLR_GEN_CALL (0): Read this register to clear the GEN_CALL interrupt (bit 11) of...
io_ro_32 clr_gen_call;
_REG_(I2C_IC_ENABLE_OFFSET) // I2C_IC_ENABLE
// I2C Enable Register
// 0x00000004 [2] : TX_CMD_BLOCK (0): In Master mode: - 1'b1: Blocks the transmission of data on I2C bus even if Tx...
// 0x00000002 [1] : ABORT (0): When set, the controller initiates the transfer abort
// 0x00000001 [0] : ENABLE (0): Controls whether the DW_apb_i2c is enabled
io_rw_32 enable;
io_rw_32 status;
io_rw_32 txflr;
io_rw_32 rxflr;
_REG_(I2C_IC_STATUS_OFFSET) // I2C_IC_STATUS
// I2C Status Register
// 0x00000040 [6] : SLV_ACTIVITY (0): Slave FSM Activity Status
// 0x00000020 [5] : MST_ACTIVITY (0): Master FSM Activity Status
// 0x00000010 [4] : RFF (0): Receive FIFO Completely Full
// 0x00000008 [3] : RFNE (0): Receive FIFO Not Empty
// 0x00000004 [2] : TFE (1): Transmit FIFO Completely Empty
// 0x00000002 [1] : TFNF (1): Transmit FIFO Not Full
// 0x00000001 [0] : ACTIVITY (0): I2C Activity Status
io_ro_32 status;
_REG_(I2C_IC_TXFLR_OFFSET) // I2C_IC_TXFLR
// I2C Transmit FIFO Level Register This register contains the number of valid data entries in the transmit FIFO buffer
// 0x0000001f [4:0] : TXFLR (0): Transmit FIFO Level
io_ro_32 txflr;
_REG_(I2C_IC_RXFLR_OFFSET) // I2C_IC_RXFLR
// I2C Receive FIFO Level Register This register contains the number of valid data entries in the receive FIFO buffer
// 0x0000001f [4:0] : RXFLR (0): Receive FIFO Level
io_ro_32 rxflr;
_REG_(I2C_IC_SDA_HOLD_OFFSET) // I2C_IC_SDA_HOLD
// I2C SDA Hold Time Length Register
// 0x00ff0000 [23:16] : IC_SDA_RX_HOLD (0): Sets the required SDA hold time in units of ic_clk period, when DW_apb_i2c...
// 0x0000ffff [15:0] : IC_SDA_TX_HOLD (1): Sets the required SDA hold time in units of ic_clk period, when DW_apb_i2c...
io_rw_32 sda_hold;
io_rw_32 tx_abrt_source;
_REG_(I2C_IC_TX_ABRT_SOURCE_OFFSET) // I2C_IC_TX_ABRT_SOURCE
// I2C Transmit Abort Source Register
// 0xff800000 [31:23] : TX_FLUSH_CNT (0): This field indicates the number of Tx FIFO Data Commands which are flushed...
// 0x00010000 [16] : ABRT_USER_ABRT (0): This is a master-mode-only bit
// 0x00008000 [15] : ABRT_SLVRD_INTX (0): 1: When the processor side responds to a slave mode request for data to be...
// 0x00004000 [14] : ABRT_SLV_ARBLOST (0): This field indicates that a Slave has lost the bus while transmitting...
// 0x00002000 [13] : ABRT_SLVFLUSH_TXFIFO (0): This field specifies that the Slave has received a read command and...
// 0x00001000 [12] : ARB_LOST (0): This field specifies that the Master has lost arbitration, or if...
// 0x00000800 [11] : ABRT_MASTER_DIS (0): This field indicates that the User tries to initiate a Master operation...
// 0x00000400 [10] : ABRT_10B_RD_NORSTRT (0): This field indicates that the restart is disabled (IC_RESTART_EN bit...
// 0x00000200 [9] : ABRT_SBYTE_NORSTRT (0): To clear Bit 9, the source of the ABRT_SBYTE_NORSTRT must be fixed...
// 0x00000100 [8] : ABRT_HS_NORSTRT (0): This field indicates that the restart is disabled (IC_RESTART_EN bit...
// 0x00000080 [7] : ABRT_SBYTE_ACKDET (0): This field indicates that the Master has sent a START Byte and the START...
// 0x00000040 [6] : ABRT_HS_ACKDET (0): This field indicates that the Master is in High Speed mode and the High...
// 0x00000020 [5] : ABRT_GCALL_READ (0): This field indicates that DW_apb_i2c in the master mode has sent a General...
// 0x00000010 [4] : ABRT_GCALL_NOACK (0): This field indicates that DW_apb_i2c in master mode has sent a General...
// 0x00000008 [3] : ABRT_TXDATA_NOACK (0): This field indicates the master-mode only bit
// 0x00000004 [2] : ABRT_10ADDR2_NOACK (0): This field indicates that the Master is in 10-bit address mode and that...
// 0x00000002 [1] : ABRT_10ADDR1_NOACK (0): This field indicates that the Master is in 10-bit address mode and the...
// 0x00000001 [0] : ABRT_7B_ADDR_NOACK (0): This field indicates that the Master is in 7-bit addressing mode and...
io_ro_32 tx_abrt_source;
_REG_(I2C_IC_SLV_DATA_NACK_ONLY_OFFSET) // I2C_IC_SLV_DATA_NACK_ONLY
// Generate Slave Data NACK Register
// 0x00000001 [0] : NACK (0): Generate NACK
io_rw_32 slv_data_nack_only;
_REG_(I2C_IC_DMA_CR_OFFSET) // I2C_IC_DMA_CR
// DMA Control Register
// 0x00000002 [1] : TDMAE (0): Transmit DMA Enable
// 0x00000001 [0] : RDMAE (0): Receive DMA Enable
io_rw_32 dma_cr;
_REG_(I2C_IC_DMA_TDLR_OFFSET) // I2C_IC_DMA_TDLR
// DMA Transmit Data Level Register
// 0x0000000f [3:0] : DMATDL (0): Transmit Data Level
io_rw_32 dma_tdlr;
_REG_(I2C_IC_DMA_RDLR_OFFSET) // I2C_IC_DMA_RDLR
// I2C Receive Data Level Register
// 0x0000000f [3:0] : DMARDL (0): Receive Data Level
io_rw_32 dma_rdlr;
_REG_(I2C_IC_SDA_SETUP_OFFSET) // I2C_IC_SDA_SETUP
// I2C SDA Setup Register
// 0x000000ff [7:0] : SDA_SETUP (0x64): SDA Setup
io_rw_32 sda_setup;
_REG_(I2C_IC_ACK_GENERAL_CALL_OFFSET) // I2C_IC_ACK_GENERAL_CALL
// I2C ACK General Call Register
// 0x00000001 [0] : ACK_GEN_CALL (1): ACK General Call
io_rw_32 ack_general_call;
io_rw_32 enable_status;
_REG_(I2C_IC_ENABLE_STATUS_OFFSET) // I2C_IC_ENABLE_STATUS
// I2C Enable Status Register
// 0x00000004 [2] : SLV_RX_DATA_LOST (0): Slave Received Data Lost
// 0x00000002 [1] : SLV_DISABLED_WHILE_BUSY (0): Slave Disabled While Busy (Transmit, Receive)
// 0x00000001 [0] : IC_EN (0): ic_en Status
io_ro_32 enable_status;
_REG_(I2C_IC_FS_SPKLEN_OFFSET) // I2C_IC_FS_SPKLEN
// I2C SS, FS or FM+ spike suppression limit
// 0x000000ff [7:0] : IC_FS_SPKLEN (0x7): This register must be set before any I2C bus transaction can take place to...
io_rw_32 fs_spklen;
uint32_t _pad2;
io_rw_32 clr_restart_det;
_REG_(I2C_IC_CLR_RESTART_DET_OFFSET) // I2C_IC_CLR_RESTART_DET
// Clear RESTART_DET Interrupt Register
// 0x00000001 [0] : CLR_RESTART_DET (0): Read this register to clear the RESTART_DET interrupt (bit 12) of...
io_ro_32 clr_restart_det;
uint32_t _pad3[18];
_REG_(I2C_IC_COMP_PARAM_1_OFFSET) // I2C_IC_COMP_PARAM_1
// Component Parameter Register 1
// 0x00ff0000 [23:16] : TX_BUFFER_DEPTH (0): TX Buffer Depth = 16
// 0x0000ff00 [15:8] : RX_BUFFER_DEPTH (0): RX Buffer Depth = 16
// 0x00000080 [7] : ADD_ENCODED_PARAMS (0): Encoded parameters not visible
// 0x00000040 [6] : HAS_DMA (0): DMA handshaking signals are enabled
// 0x00000020 [5] : INTR_IO (0): COMBINED Interrupt outputs
// 0x00000010 [4] : HC_COUNT_VALUES (0): Programmable count values for each mode
// 0x0000000c [3:2] : MAX_SPEED_MODE (0): MAX SPEED MODE = FAST MODE
// 0x00000003 [1:0] : APB_DATA_WIDTH (0): APB data bus width is 32 bits
io_ro_32 comp_param_1;
_REG_(I2C_IC_COMP_VERSION_OFFSET) // I2C_IC_COMP_VERSION
// I2C Component Version Register
// 0xffffffff [31:0] : IC_COMP_VERSION (0x3230312a)
io_ro_32 comp_version;
_REG_(I2C_IC_COMP_TYPE_OFFSET) // I2C_IC_COMP_TYPE
// I2C Component Type Register
// 0xffffffff [31:0] : IC_COMP_TYPE (0x44570140): Designware Component Type number = 0x44_57_01_40
io_ro_32 comp_type;
} i2c_hw_t;
#define i2c0_hw ((i2c_hw_t *const)I2C0_BASE)
#define i2c1_hw ((i2c_hw_t *const)I2C1_BASE)
// List of configuration constants for the Synopsys I2C hardware (you may see
// references to these in I2C register header; these are *fixed* values,
// set at hardware design time):
// IC_ULTRA_FAST_MODE ................ 0x0
// IC_UFM_TBUF_CNT_DEFAULT ........... 0x8
// IC_UFM_SCL_LOW_COUNT .............. 0x0008
// IC_UFM_SCL_HIGH_COUNT ............. 0x0006
// IC_TX_TL .......................... 0x0
// IC_TX_CMD_BLOCK ................... 0x1
// IC_HAS_DMA ........................ 0x1
// IC_HAS_ASYNC_FIFO ................. 0x0
// IC_SMBUS_ARP ...................... 0x0
// IC_FIRST_DATA_BYTE_STATUS ......... 0x1
// IC_INTR_IO ........................ 0x1
// IC_MASTER_MODE .................... 0x1
// IC_DEFAULT_ACK_GENERAL_CALL ....... 0x1
// IC_INTR_POL ....................... 0x1
// IC_OPTIONAL_SAR ................... 0x0
// IC_DEFAULT_TAR_SLAVE_ADDR ......... 0x055
// IC_DEFAULT_SLAVE_ADDR ............. 0x055
// IC_DEFAULT_HS_SPKLEN .............. 0x1
// IC_FS_SCL_HIGH_COUNT .............. 0x0006
// IC_HS_SCL_LOW_COUNT ............... 0x0008
// IC_DEVICE_ID_VALUE ................ 0x0
// IC_10BITADDR_MASTER ............... 0x0
// IC_CLK_FREQ_OPTIMIZATION .......... 0x0
// IC_DEFAULT_FS_SPKLEN .............. 0x7
// IC_ADD_ENCODED_PARAMS ............. 0x0
// IC_DEFAULT_SDA_HOLD ............... 0x000001
// IC_DEFAULT_SDA_SETUP .............. 0x64
// IC_AVOID_RX_FIFO_FLUSH_ON_TX_ABRT . 0x0
// IC_CLOCK_PERIOD ................... 100
// IC_EMPTYFIFO_HOLD_MASTER_EN ....... 1
// IC_RESTART_EN ..................... 0x1
// IC_TX_CMD_BLOCK_DEFAULT ........... 0x0
// IC_BUS_CLEAR_FEATURE .............. 0x0
// IC_CAP_LOADING .................... 100
// IC_FS_SCL_LOW_COUNT ............... 0x000d
// APB_DATA_WIDTH .................... 32
// IC_SDA_STUCK_TIMEOUT_DEFAULT ...... 0xffffffff
// IC_SLV_DATA_NACK_ONLY ............. 0x1
// IC_10BITADDR_SLAVE ................ 0x0
// IC_CLK_TYPE ....................... 0x0
// IC_SMBUS_UDID_MSB ................. 0x0
// IC_SMBUS_SUSPEND_ALERT ............ 0x0
// IC_HS_SCL_HIGH_COUNT .............. 0x0006
// IC_SLV_RESTART_DET_EN ............. 0x1
// IC_SMBUS .......................... 0x0
// IC_OPTIONAL_SAR_DEFAULT ........... 0x0
// IC_PERSISTANT_SLV_ADDR_DEFAULT .... 0x0
// IC_USE_COUNTS ..................... 0x0
// IC_RX_BUFFER_DEPTH ................ 16
// IC_SCL_STUCK_TIMEOUT_DEFAULT ...... 0xffffffff
// IC_RX_FULL_HLD_BUS_EN ............. 0x1
// IC_SLAVE_DISABLE .................. 0x1
// IC_RX_TL .......................... 0x0
// IC_DEVICE_ID ...................... 0x0
// IC_HC_COUNT_VALUES ................ 0x0
// I2C_DYNAMIC_TAR_UPDATE ............ 0
// IC_SMBUS_CLK_LOW_MEXT_DEFAULT ..... 0xffffffff
// IC_SMBUS_CLK_LOW_SEXT_DEFAULT ..... 0xffffffff
// IC_HS_MASTER_CODE ................. 0x1
// IC_SMBUS_RST_IDLE_CNT_DEFAULT ..... 0xffff
// IC_SMBUS_UDID_LSB_DEFAULT ......... 0xffffffff
// IC_SS_SCL_HIGH_COUNT .............. 0x0028
// IC_SS_SCL_LOW_COUNT ............... 0x002f
// IC_MAX_SPEED_MODE ................. 0x2
// IC_STAT_FOR_CLK_STRETCH ........... 0x0
// IC_STOP_DET_IF_MASTER_ACTIVE ...... 0x0
// IC_DEFAULT_UFM_SPKLEN ............. 0x1
// IC_TX_BUFFER_DEPTH ................ 16
#endif

View File

@ -1,5 +1,7 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
* Copyright (c) 2021 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
@ -8,16 +10,37 @@
#define _HARDWARE_STRUCTS_INTERP_H
#include "hardware/address_mapped.h"
#include "hardware/platform_defs.h"
#include "hardware/regs/sio.h"
// Reference to datasheet: https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf#tab-registerlist_sio
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/sio.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE]: FIELDNAME (RESETVALUE): DESCRIPTION
typedef struct {
_REG_(SIO_INTERP0_ACCUM0_OFFSET) // SIO_INTERP0_ACCUM0
io_rw_32 accum[2];
_REG_(SIO_INTERP0_BASE0_OFFSET) // SIO_INTERP0_BASE0
io_rw_32 base[3];
_REG_(SIO_INTERP0_POP_LANE0_OFFSET) // SIO_INTERP0_POP_LANE0
io_ro_32 pop[3];
_REG_(SIO_INTERP0_PEEK_LANE0_OFFSET) // SIO_INTERP0_PEEK_LANE0
io_ro_32 peek[3];
_REG_(SIO_INTERP0_CTRL_LANE0_OFFSET) // SIO_INTERP0_CTRL_LANE0
io_rw_32 ctrl[2];
_REG_(SIO_INTERP0_ACCUM0_ADD_OFFSET) // SIO_INTERP0_ACCUM0_ADD
io_rw_32 add_raw[2];
_REG_(SIO_INTERP0_BASE_1AND0_OFFSET) // SIO_INTERP0_BASE_1AND0
// On write, the lower 16 bits go to BASE0, upper bits to BASE1 simultaneously
io_wo_32 base01;
} interp_hw_t;

View File

@ -1,5 +1,7 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
* Copyright (c) 2021 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
@ -8,28 +10,67 @@
#define _HARDWARE_STRUCTS_IOBANK0_H
#include "hardware/address_mapped.h"
#include "hardware/platform_defs.h"
#include "hardware/regs/io_bank0.h"
// Reference to datasheet: https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf#tab-registerlist_io_bank0
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/io_bank0.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE]: FIELDNAME (RESETVALUE): DESCRIPTION
typedef struct {
_REG_(IO_BANK0_GPIO0_STATUS_OFFSET) // IO_BANK0_GPIO0_STATUS
// GPIO status
// 0x04000000 [26] : IRQTOPROC (0): interrupt to processors, after override is applied
// 0x01000000 [24] : IRQFROMPAD (0): interrupt from pad before override is applied
// 0x00080000 [19] : INTOPERI (0): input signal to peripheral, after override is applied
// 0x00020000 [17] : INFROMPAD (0): input signal from pad, before override is applied
// 0x00002000 [13] : OETOPAD (0): output enable to pad after register override is applied
// 0x00001000 [12] : OEFROMPERI (0): output enable from selected peripheral, before register override is applied
// 0x00000200 [9] : OUTTOPAD (0): output signal to pad after register override is applied
// 0x00000100 [8] : OUTFROMPERI (0): output signal from selected peripheral, before register override is applied
io_ro_32 status;
_REG_(IO_BANK0_GPIO0_CTRL_OFFSET) // IO_BANK0_GPIO0_CTRL
// GPIO control including function select and overrides
// 0x30000000 [29:28] : IRQOVER (0)
// 0x00030000 [17:16] : INOVER (0)
// 0x00003000 [13:12] : OEOVER (0)
// 0x00000300 [9:8] : OUTOVER (0)
// 0x0000001f [4:0] : FUNCSEL (0x1f): 0-31 -> selects pin function according to the gpio table
io_rw_32 ctrl;
} io_status_ctrl_hw_t;
typedef struct {
_REG_(IO_BANK0_PROC0_INTE0_OFFSET) // IO_BANK0_PROC0_INTE0
io_rw_32 inte[4];
_REG_(IO_BANK0_PROC0_INTF0_OFFSET) // IO_BANK0_PROC0_INTF0
io_rw_32 intf[4];
io_rw_32 ints[4];
_REG_(IO_BANK0_PROC0_INTS0_OFFSET) // IO_BANK0_PROC0_INTS0
io_ro_32 ints[4];
} io_irq_ctrl_hw_t;
/// \tag::iobank0_hw[]
typedef struct {
struct {
io_rw_32 status;
io_rw_32 ctrl;
} io[30];
io_status_ctrl_hw_t io[NUM_BANK0_GPIOS]; // 30
_REG_(IO_BANK0_INTR0_OFFSET) // IO_BANK0_INTR0
io_rw_32 intr[4];
io_irq_ctrl_hw_t proc0_irq_ctrl;
io_irq_ctrl_hw_t proc1_irq_ctrl;
io_irq_ctrl_hw_t dormant_wake_irq_ctrl;
} iobank0_hw_t;
/// \end::iobank0_hw[]
#define iobank0_hw ((iobank0_hw_t *const)IO_BANK0_BASE)
/// \end::iobank0_hw[]
static_assert( NUM_BANK0_GPIOS == 30, "");
#endif

View File

@ -1,5 +1,7 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
* Copyright (c) 2021 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
@ -8,16 +10,165 @@
#define _HARDWARE_STRUCTS_IOQSPI_H
#include "hardware/address_mapped.h"
#include "hardware/platform_defs.h"
#include "hardware/regs/io_qspi.h"
// Reference to datasheet: https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf#tab-registerlist_io_qspi
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/io_qspi.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE]: FIELDNAME (RESETVALUE): DESCRIPTION
typedef struct {
struct {
io_rw_32 status;
io_rw_32 ctrl;
} io[6];
_REG_(IO_QSPI_GPIO_QSPI_SCLK_STATUS_OFFSET) // IO_QSPI_GPIO_QSPI_SCLK_STATUS
// GPIO status
// 0x04000000 [26] : IRQTOPROC (0): interrupt to processors, after override is applied
// 0x01000000 [24] : IRQFROMPAD (0): interrupt from pad before override is applied
// 0x00080000 [19] : INTOPERI (0): input signal to peripheral, after override is applied
// 0x00020000 [17] : INFROMPAD (0): input signal from pad, before override is applied
// 0x00002000 [13] : OETOPAD (0): output enable to pad after register override is applied
// 0x00001000 [12] : OEFROMPERI (0): output enable from selected peripheral, before register override is applied
// 0x00000200 [9] : OUTTOPAD (0): output signal to pad after register override is applied
// 0x00000100 [8] : OUTFROMPERI (0): output signal from selected peripheral, before register override is applied
io_ro_32 status;
_REG_(IO_QSPI_GPIO_QSPI_SCLK_CTRL_OFFSET) // IO_QSPI_GPIO_QSPI_SCLK_CTRL
// GPIO control including function select and overrides
// 0x30000000 [29:28] : IRQOVER (0)
// 0x00030000 [17:16] : INOVER (0)
// 0x00003000 [13:12] : OEOVER (0)
// 0x00000300 [9:8] : OUTOVER (0)
// 0x0000001f [4:0] : FUNCSEL (0x1f): 0-31 -> selects pin function according to the gpio table
io_rw_32 ctrl;
} io_status_ctrl_hw_t;
typedef struct {
_REG_(IO_QSPI_PROC0_INTE_OFFSET) // IO_QSPI_PROC0_INTE
// Interrupt Enable for proc0
// 0x00800000 [23] : GPIO_QSPI_SD3_EDGE_HIGH (0)
// 0x00400000 [22] : GPIO_QSPI_SD3_EDGE_LOW (0)
// 0x00200000 [21] : GPIO_QSPI_SD3_LEVEL_HIGH (0)
// 0x00100000 [20] : GPIO_QSPI_SD3_LEVEL_LOW (0)
// 0x00080000 [19] : GPIO_QSPI_SD2_EDGE_HIGH (0)
// 0x00040000 [18] : GPIO_QSPI_SD2_EDGE_LOW (0)
// 0x00020000 [17] : GPIO_QSPI_SD2_LEVEL_HIGH (0)
// 0x00010000 [16] : GPIO_QSPI_SD2_LEVEL_LOW (0)
// 0x00008000 [15] : GPIO_QSPI_SD1_EDGE_HIGH (0)
// 0x00004000 [14] : GPIO_QSPI_SD1_EDGE_LOW (0)
// 0x00002000 [13] : GPIO_QSPI_SD1_LEVEL_HIGH (0)
// 0x00001000 [12] : GPIO_QSPI_SD1_LEVEL_LOW (0)
// 0x00000800 [11] : GPIO_QSPI_SD0_EDGE_HIGH (0)
// 0x00000400 [10] : GPIO_QSPI_SD0_EDGE_LOW (0)
// 0x00000200 [9] : GPIO_QSPI_SD0_LEVEL_HIGH (0)
// 0x00000100 [8] : GPIO_QSPI_SD0_LEVEL_LOW (0)
// 0x00000080 [7] : GPIO_QSPI_SS_EDGE_HIGH (0)
// 0x00000040 [6] : GPIO_QSPI_SS_EDGE_LOW (0)
// 0x00000020 [5] : GPIO_QSPI_SS_LEVEL_HIGH (0)
// 0x00000010 [4] : GPIO_QSPI_SS_LEVEL_LOW (0)
// 0x00000008 [3] : GPIO_QSPI_SCLK_EDGE_HIGH (0)
// 0x00000004 [2] : GPIO_QSPI_SCLK_EDGE_LOW (0)
// 0x00000002 [1] : GPIO_QSPI_SCLK_LEVEL_HIGH (0)
// 0x00000001 [0] : GPIO_QSPI_SCLK_LEVEL_LOW (0)
io_rw_32 inte;
_REG_(IO_QSPI_PROC0_INTF_OFFSET) // IO_QSPI_PROC0_INTF
// Interrupt Force for proc0
// 0x00800000 [23] : GPIO_QSPI_SD3_EDGE_HIGH (0)
// 0x00400000 [22] : GPIO_QSPI_SD3_EDGE_LOW (0)
// 0x00200000 [21] : GPIO_QSPI_SD3_LEVEL_HIGH (0)
// 0x00100000 [20] : GPIO_QSPI_SD3_LEVEL_LOW (0)
// 0x00080000 [19] : GPIO_QSPI_SD2_EDGE_HIGH (0)
// 0x00040000 [18] : GPIO_QSPI_SD2_EDGE_LOW (0)
// 0x00020000 [17] : GPIO_QSPI_SD2_LEVEL_HIGH (0)
// 0x00010000 [16] : GPIO_QSPI_SD2_LEVEL_LOW (0)
// 0x00008000 [15] : GPIO_QSPI_SD1_EDGE_HIGH (0)
// 0x00004000 [14] : GPIO_QSPI_SD1_EDGE_LOW (0)
// 0x00002000 [13] : GPIO_QSPI_SD1_LEVEL_HIGH (0)
// 0x00001000 [12] : GPIO_QSPI_SD1_LEVEL_LOW (0)
// 0x00000800 [11] : GPIO_QSPI_SD0_EDGE_HIGH (0)
// 0x00000400 [10] : GPIO_QSPI_SD0_EDGE_LOW (0)
// 0x00000200 [9] : GPIO_QSPI_SD0_LEVEL_HIGH (0)
// 0x00000100 [8] : GPIO_QSPI_SD0_LEVEL_LOW (0)
// 0x00000080 [7] : GPIO_QSPI_SS_EDGE_HIGH (0)
// 0x00000040 [6] : GPIO_QSPI_SS_EDGE_LOW (0)
// 0x00000020 [5] : GPIO_QSPI_SS_LEVEL_HIGH (0)
// 0x00000010 [4] : GPIO_QSPI_SS_LEVEL_LOW (0)
// 0x00000008 [3] : GPIO_QSPI_SCLK_EDGE_HIGH (0)
// 0x00000004 [2] : GPIO_QSPI_SCLK_EDGE_LOW (0)
// 0x00000002 [1] : GPIO_QSPI_SCLK_LEVEL_HIGH (0)
// 0x00000001 [0] : GPIO_QSPI_SCLK_LEVEL_LOW (0)
io_rw_32 intf;
_REG_(IO_QSPI_PROC0_INTS_OFFSET) // IO_QSPI_PROC0_INTS
// Interrupt status after masking & forcing for proc0
// 0x00800000 [23] : GPIO_QSPI_SD3_EDGE_HIGH (0)
// 0x00400000 [22] : GPIO_QSPI_SD3_EDGE_LOW (0)
// 0x00200000 [21] : GPIO_QSPI_SD3_LEVEL_HIGH (0)
// 0x00100000 [20] : GPIO_QSPI_SD3_LEVEL_LOW (0)
// 0x00080000 [19] : GPIO_QSPI_SD2_EDGE_HIGH (0)
// 0x00040000 [18] : GPIO_QSPI_SD2_EDGE_LOW (0)
// 0x00020000 [17] : GPIO_QSPI_SD2_LEVEL_HIGH (0)
// 0x00010000 [16] : GPIO_QSPI_SD2_LEVEL_LOW (0)
// 0x00008000 [15] : GPIO_QSPI_SD1_EDGE_HIGH (0)
// 0x00004000 [14] : GPIO_QSPI_SD1_EDGE_LOW (0)
// 0x00002000 [13] : GPIO_QSPI_SD1_LEVEL_HIGH (0)
// 0x00001000 [12] : GPIO_QSPI_SD1_LEVEL_LOW (0)
// 0x00000800 [11] : GPIO_QSPI_SD0_EDGE_HIGH (0)
// 0x00000400 [10] : GPIO_QSPI_SD0_EDGE_LOW (0)
// 0x00000200 [9] : GPIO_QSPI_SD0_LEVEL_HIGH (0)
// 0x00000100 [8] : GPIO_QSPI_SD0_LEVEL_LOW (0)
// 0x00000080 [7] : GPIO_QSPI_SS_EDGE_HIGH (0)
// 0x00000040 [6] : GPIO_QSPI_SS_EDGE_LOW (0)
// 0x00000020 [5] : GPIO_QSPI_SS_LEVEL_HIGH (0)
// 0x00000010 [4] : GPIO_QSPI_SS_LEVEL_LOW (0)
// 0x00000008 [3] : GPIO_QSPI_SCLK_EDGE_HIGH (0)
// 0x00000004 [2] : GPIO_QSPI_SCLK_EDGE_LOW (0)
// 0x00000002 [1] : GPIO_QSPI_SCLK_LEVEL_HIGH (0)
// 0x00000001 [0] : GPIO_QSPI_SCLK_LEVEL_LOW (0)
io_ro_32 ints;
} io_qspi_ctrl_hw_t;
typedef struct {
io_status_ctrl_hw_t io[NUM_QSPI_GPIOS]; // 6
_REG_(IO_QSPI_INTR_OFFSET) // IO_QSPI_INTR
// Raw Interrupts
// 0x00800000 [23] : GPIO_QSPI_SD3_EDGE_HIGH (0)
// 0x00400000 [22] : GPIO_QSPI_SD3_EDGE_LOW (0)
// 0x00200000 [21] : GPIO_QSPI_SD3_LEVEL_HIGH (0)
// 0x00100000 [20] : GPIO_QSPI_SD3_LEVEL_LOW (0)
// 0x00080000 [19] : GPIO_QSPI_SD2_EDGE_HIGH (0)
// 0x00040000 [18] : GPIO_QSPI_SD2_EDGE_LOW (0)
// 0x00020000 [17] : GPIO_QSPI_SD2_LEVEL_HIGH (0)
// 0x00010000 [16] : GPIO_QSPI_SD2_LEVEL_LOW (0)
// 0x00008000 [15] : GPIO_QSPI_SD1_EDGE_HIGH (0)
// 0x00004000 [14] : GPIO_QSPI_SD1_EDGE_LOW (0)
// 0x00002000 [13] : GPIO_QSPI_SD1_LEVEL_HIGH (0)
// 0x00001000 [12] : GPIO_QSPI_SD1_LEVEL_LOW (0)
// 0x00000800 [11] : GPIO_QSPI_SD0_EDGE_HIGH (0)
// 0x00000400 [10] : GPIO_QSPI_SD0_EDGE_LOW (0)
// 0x00000200 [9] : GPIO_QSPI_SD0_LEVEL_HIGH (0)
// 0x00000100 [8] : GPIO_QSPI_SD0_LEVEL_LOW (0)
// 0x00000080 [7] : GPIO_QSPI_SS_EDGE_HIGH (0)
// 0x00000040 [6] : GPIO_QSPI_SS_EDGE_LOW (0)
// 0x00000020 [5] : GPIO_QSPI_SS_LEVEL_HIGH (0)
// 0x00000010 [4] : GPIO_QSPI_SS_LEVEL_LOW (0)
// 0x00000008 [3] : GPIO_QSPI_SCLK_EDGE_HIGH (0)
// 0x00000004 [2] : GPIO_QSPI_SCLK_EDGE_LOW (0)
// 0x00000002 [1] : GPIO_QSPI_SCLK_LEVEL_HIGH (0)
// 0x00000001 [0] : GPIO_QSPI_SCLK_LEVEL_LOW (0)
io_rw_32 intr;
io_qspi_ctrl_hw_t proc0_qspi_ctrl;
io_qspi_ctrl_hw_t proc1_qspi_ctrl;
io_qspi_ctrl_hw_t dormant_wake_qspi_ctrl;
} ioqspi_hw_t;
#define ioqspi_hw ((ioqspi_hw_t *const)IO_QSPI_BASE)
static_assert( NUM_QSPI_GPIOS == 6, "");
#endif

View File

@ -1,5 +1,7 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
* Copyright (c) 2021 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
@ -10,11 +12,47 @@
#include "hardware/address_mapped.h"
#include "hardware/regs/m0plus.h"
// Reference to datasheet: https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf#tab-registerlist_m0plus
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/m0plus.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE]: FIELDNAME (RESETVALUE): DESCRIPTION
typedef struct {
_REG_(M0PLUS_MPU_TYPE_OFFSET) // M0PLUS_MPU_TYPE
// Read the MPU Type Register to determine if the processor implements an MPU, and how many regions the MPU supports
// 0x00ff0000 [23:16] : IREGION (0): Instruction region
// 0x0000ff00 [15:8] : DREGION (0x8): Number of regions supported by the MPU
// 0x00000001 [0] : SEPARATE (0): Indicates support for separate instruction and data address maps
io_ro_32 type;
_REG_(M0PLUS_MPU_CTRL_OFFSET) // M0PLUS_MPU_CTRL
// Use the MPU Control Register to enable and disable the MPU, and to control whether the default memory map is enabled...
// 0x00000004 [2] : PRIVDEFENA (0): Controls whether the default memory map is enabled as a background region for...
// 0x00000002 [1] : HFNMIENA (0): Controls the use of the MPU for HardFaults and NMIs
// 0x00000001 [0] : ENABLE (0): Enables the MPU
io_rw_32 ctrl;
_REG_(M0PLUS_MPU_RNR_OFFSET) // M0PLUS_MPU_RNR
// Use the MPU Region Number Register to select the region currently accessed by MPU_RBAR and MPU_RASR
// 0x0000000f [3:0] : REGION (0): Indicates the MPU region referenced by the MPU_RBAR and MPU_RASR registers
io_rw_32 rnr;
_REG_(M0PLUS_MPU_RBAR_OFFSET) // M0PLUS_MPU_RBAR
// Read the MPU Region Base Address Register to determine the base address of the region identified by MPU_RNR
// 0xffffff00 [31:8] : ADDR (0): Base address of the region
// 0x00000010 [4] : VALID (0): On writes, indicates whether the write must update the base address of the region...
// 0x0000000f [3:0] : REGION (0): On writes, specifies the number of the region whose base address to update provided...
io_rw_32 rbar;
_REG_(M0PLUS_MPU_RASR_OFFSET) // M0PLUS_MPU_RASR
// Use the MPU Region Attribute and Size Register to define the size, access behaviour and memory type of the region...
// 0xffff0000 [31:16] : ATTRS (0): The MPU Region Attribute field
// 0x0000ff00 [15:8] : SRD (0): Subregion Disable
// 0x0000003e [5:1] : SIZE (0): Indicates the region size
// 0x00000001 [0] : ENABLE (0): Enables the region
io_rw_32 rasr;
} mpu_hw_t;

View File

@ -1,5 +1,7 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
* Copyright (c) 2021 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
@ -8,14 +10,28 @@
#define _HARDWARE_STRUCTS_PADS_QSPI_H
#include "hardware/address_mapped.h"
#include "hardware/platform_defs.h"
#include "hardware/regs/pads_qspi.h"
// Reference to datasheet: https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf#tab-registerlist_pads_qspi
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/pads_qspi.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE]: FIELDNAME (RESETVALUE): DESCRIPTION
typedef struct {
_REG_(PADS_QSPI_VOLTAGE_SELECT_OFFSET) // PADS_QSPI_VOLTAGE_SELECT
// Voltage select
// 0x00000001 [0] : VOLTAGE_SELECT (0)
io_rw_32 voltage_select;
io_rw_32 io[6];
_REG_(PADS_QSPI_GPIO_QSPI_SCLK_OFFSET) // PADS_QSPI_GPIO_QSPI_SCLK
io_rw_32 io[NUM_QSPI_GPIOS]; // 6
} pads_qspi_hw_t;
#define pads_qspi_hw ((pads_qspi_hw_t *const)PADS_QSPI_BASE)
static_assert( NUM_QSPI_GPIOS == 6, "");
#endif

View File

@ -1,5 +1,7 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
* Copyright (c) 2021 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
@ -8,14 +10,28 @@
#define _HARDWARE_STRUCTS_PADSBANK0_H
#include "hardware/address_mapped.h"
#include "hardware/platform_defs.h"
#include "hardware/regs/pads_bank0.h"
// Reference to datasheet: https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf#tab-registerlist_pads_bank0
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/pads_bank0.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE]: FIELDNAME (RESETVALUE): DESCRIPTION
typedef struct {
_REG_(PADS_BANK0_VOLTAGE_SELECT_OFFSET) // PADS_BANK0_VOLTAGE_SELECT
// Voltage select
// 0x00000001 [0] : VOLTAGE_SELECT (0)
io_rw_32 voltage_select;
io_rw_32 io[30];
_REG_(PADS_BANK0_GPIO0_OFFSET) // PADS_BANK0_GPIO0
io_rw_32 io[NUM_BANK0_GPIOS]; // 30
} padsbank0_hw_t;
#define padsbank0_hw ((padsbank0_hw_t *)PADS_BANK0_BASE)
#define padsbank0_hw ((padsbank0_hw_t *const)PADS_BANK0_BASE)
static_assert( NUM_BANK0_GPIOS == 30, "");
#endif

View File

@ -1,5 +1,7 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
* Copyright (c) 2021 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
@ -8,41 +10,265 @@
#define _HARDWARE_STRUCTS_PIO_H
#include "hardware/address_mapped.h"
#include "hardware/platform_defs.h"
#include "hardware/regs/pio.h"
// Reference to datasheet: https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf#tab-registerlist_pio
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/pio.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE]: FIELDNAME (RESETVALUE): DESCRIPTION
typedef struct pio_sm_hw {
_REG_(PIO_SM0_CLKDIV_OFFSET) // PIO_SM0_CLKDIV
// Clock divisor register for state machine 0
// 0xffff0000 [31:16] : INT (1): Effective frequency is sysclk/(int + frac/256)
// 0x0000ff00 [15:8] : FRAC (0): Fractional part of clock divisor
io_rw_32 clkdiv;
_REG_(PIO_SM0_EXECCTRL_OFFSET) // PIO_SM0_EXECCTRL
// Execution/behavioural settings for state machine 0
// 0x80000000 [31] : EXEC_STALLED (0): If 1, an instruction written to SMx_INSTR is stalled, and latched by the state machine
// 0x40000000 [30] : SIDE_EN (0): If 1, the MSB of the Delay/Side-set instruction field is used as side-set enable,...
// 0x20000000 [29] : SIDE_PINDIR (0): If 1, side-set data is asserted to pin directions, instead of pin values
// 0x1f000000 [28:24] : JMP_PIN (0): The GPIO number to use as condition for JMP PIN
// 0x00f80000 [23:19] : OUT_EN_SEL (0): Which data bit to use for inline OUT enable
// 0x00040000 [18] : INLINE_OUT_EN (0): If 1, use a bit of OUT data as an auxiliary write enable
// 0x00020000 [17] : OUT_STICKY (0): Continuously assert the most recent OUT/SET to the pins
// 0x0001f000 [16:12] : WRAP_TOP (0x1f): After reaching this address, execution is wrapped to wrap_bottom
// 0x00000f80 [11:7] : WRAP_BOTTOM (0): After reaching wrap_top, execution is wrapped to this address
// 0x00000010 [4] : STATUS_SEL (0): Comparison used for the MOV x, STATUS instruction
// 0x0000000f [3:0] : STATUS_N (0): Comparison level for the MOV x, STATUS instruction
io_rw_32 execctrl;
_REG_(PIO_SM0_SHIFTCTRL_OFFSET) // PIO_SM0_SHIFTCTRL
// Control behaviour of the input/output shift registers for state machine 0
// 0x80000000 [31] : FJOIN_RX (0): When 1, RX FIFO steals the TX FIFO's storage, and becomes twice as deep
// 0x40000000 [30] : FJOIN_TX (0): When 1, TX FIFO steals the RX FIFO's storage, and becomes twice as deep
// 0x3e000000 [29:25] : PULL_THRESH (0): Number of bits shifted out of OSR before autopull, or conditional pull (PULL...
// 0x01f00000 [24:20] : PUSH_THRESH (0): Number of bits shifted into ISR before autopush, or conditional push (PUSH...
// 0x00080000 [19] : OUT_SHIFTDIR (1): 1 = shift out of output shift register to right
// 0x00040000 [18] : IN_SHIFTDIR (1): 1 = shift input shift register to right (data enters from left)
// 0x00020000 [17] : AUTOPULL (0): Pull automatically when the output shift register is emptied, i
// 0x00010000 [16] : AUTOPUSH (0): Push automatically when the input shift register is filled, i
io_rw_32 shiftctrl;
_REG_(PIO_SM0_ADDR_OFFSET) // PIO_SM0_ADDR
// Current instruction address of state machine 0
// 0x0000001f [4:0] : SM0_ADDR (0)
io_ro_32 addr;
_REG_(PIO_SM0_INSTR_OFFSET) // PIO_SM0_INSTR
// Read to see the instruction currently addressed by state machine 0's program counter
// 0x0000ffff [15:0] : SM0_INSTR (0)
io_rw_32 instr;
_REG_(PIO_SM0_PINCTRL_OFFSET) // PIO_SM0_PINCTRL
// State machine pin control
// 0xe0000000 [31:29] : SIDESET_COUNT (0): The number of MSBs of the Delay/Side-set instruction field which are used...
// 0x1c000000 [28:26] : SET_COUNT (0x5): The number of pins asserted by a SET
// 0x03f00000 [25:20] : OUT_COUNT (0): The number of pins asserted by an OUT PINS, OUT PINDIRS or MOV PINS instruction
// 0x000f8000 [19:15] : IN_BASE (0): The pin which is mapped to the least-significant bit of a state machine's IN data bus
// 0x00007c00 [14:10] : SIDESET_BASE (0): The lowest-numbered pin that will be affected by a side-set operation
// 0x000003e0 [9:5] : SET_BASE (0): The lowest-numbered pin that will be affected by a SET PINS or SET PINDIRS instruction
// 0x0000001f [4:0] : OUT_BASE (0): The lowest-numbered pin that will be affected by an OUT PINS, OUT PINDIRS or MOV...
io_rw_32 pinctrl;
} pio_sm_hw_t;
typedef struct {
_REG_(PIO_CTRL_OFFSET) // PIO_CTRL
// PIO control register
// 0x00000f00 [11:8] : CLKDIV_RESTART (0): Restart a state machine's clock divider from an initial phase of 0
// 0x000000f0 [7:4] : SM_RESTART (0): Write 1 to instantly clear internal SM state which may be otherwise difficult...
// 0x0000000f [3:0] : SM_ENABLE (0): Enable/disable each of the four state machines by writing 1/0 to each of these four bits
io_rw_32 ctrl;
_REG_(PIO_FSTAT_OFFSET) // PIO_FSTAT
// FIFO status register
// 0x0f000000 [27:24] : TXEMPTY (0xf): State machine TX FIFO is empty
// 0x000f0000 [19:16] : TXFULL (0): State machine TX FIFO is full
// 0x00000f00 [11:8] : RXEMPTY (0xf): State machine RX FIFO is empty
// 0x0000000f [3:0] : RXFULL (0): State machine RX FIFO is full
io_ro_32 fstat;
_REG_(PIO_FDEBUG_OFFSET) // PIO_FDEBUG
// FIFO debug register
// 0x0f000000 [27:24] : TXSTALL (0): State machine has stalled on empty TX FIFO during a blocking PULL, or an OUT with...
// 0x000f0000 [19:16] : TXOVER (0): TX FIFO overflow (i
// 0x00000f00 [11:8] : RXUNDER (0): RX FIFO underflow (i
// 0x0000000f [3:0] : RXSTALL (0): State machine has stalled on full RX FIFO during a blocking PUSH, or an IN with...
io_rw_32 fdebug;
_REG_(PIO_FLEVEL_OFFSET) // PIO_FLEVEL
// FIFO levels
// 0xf0000000 [31:28] : RX3 (0)
// 0x0f000000 [27:24] : TX3 (0)
// 0x00f00000 [23:20] : RX2 (0)
// 0x000f0000 [19:16] : TX2 (0)
// 0x0000f000 [15:12] : RX1 (0)
// 0x00000f00 [11:8] : TX1 (0)
// 0x000000f0 [7:4] : RX0 (0)
// 0x0000000f [3:0] : TX0 (0)
io_ro_32 flevel;
io_wo_32 txf[NUM_PIO_STATE_MACHINES];
io_ro_32 rxf[NUM_PIO_STATE_MACHINES];
_REG_(PIO_TXF0_OFFSET) // PIO_TXF0
io_wo_32 txf[NUM_PIO_STATE_MACHINES]; // 4
_REG_(PIO_RXF0_OFFSET) // PIO_RXF0
io_ro_32 rxf[NUM_PIO_STATE_MACHINES]; // 4
_REG_(PIO_IRQ_OFFSET) // PIO_IRQ
// State machine IRQ flags register
// 0x000000ff [7:0] : IRQ (0)
io_rw_32 irq;
_REG_(PIO_IRQ_FORCE_OFFSET) // PIO_IRQ_FORCE
// Writing a 1 to each of these bits will forcibly assert the corresponding IRQ
// 0x000000ff [7:0] : IRQ_FORCE (0)
io_wo_32 irq_force;
_REG_(PIO_INPUT_SYNC_BYPASS_OFFSET) // PIO_INPUT_SYNC_BYPASS
// There is a 2-flipflop synchronizer on each GPIO input, which protects PIO logic from metastabilities
io_rw_32 input_sync_bypass;
io_rw_32 dbg_padout;
io_rw_32 dbg_padoe;
io_rw_32 dbg_cfginfo;
io_wo_32 instr_mem[32];
struct pio_sm_hw {
io_rw_32 clkdiv;
io_rw_32 execctrl;
io_rw_32 shiftctrl;
io_ro_32 addr;
io_rw_32 instr;
io_rw_32 pinctrl;
} sm[NUM_PIO_STATE_MACHINES];
io_rw_32 intr;
_REG_(PIO_DBG_PADOUT_OFFSET) // PIO_DBG_PADOUT
// Read to sample the pad output values PIO is currently driving to the GPIOs
io_ro_32 dbg_padout;
_REG_(PIO_DBG_PADOE_OFFSET) // PIO_DBG_PADOE
// Read to sample the pad output enables (direction) PIO is currently driving to the GPIOs
io_ro_32 dbg_padoe;
_REG_(PIO_DBG_CFGINFO_OFFSET) // PIO_DBG_CFGINFO
// The PIO hardware has some free parameters that may vary between chip products
// 0x003f0000 [21:16] : IMEM_SIZE (0): The size of the instruction memory, measured in units of one instruction
// 0x00000f00 [11:8] : SM_COUNT (0): The number of state machines this PIO instance is equipped with
// 0x0000003f [5:0] : FIFO_DEPTH (0): The depth of the state machine TX/RX FIFOs, measured in words
io_ro_32 dbg_cfginfo;
_REG_(PIO_INSTR_MEM0_OFFSET) // PIO_INSTR_MEM0
io_wo_32 instr_mem[PIO_INSTRUCTION_COUNT]; // 32
pio_sm_hw_t sm[NUM_PIO_STATE_MACHINES]; // 4
_REG_(PIO_INTR_OFFSET) // PIO_INTR
// Raw Interrupts
// 0x00000800 [11] : SM3 (0)
// 0x00000400 [10] : SM2 (0)
// 0x00000200 [9] : SM1 (0)
// 0x00000100 [8] : SM0 (0)
// 0x00000080 [7] : SM3_TXNFULL (0)
// 0x00000040 [6] : SM2_TXNFULL (0)
// 0x00000020 [5] : SM1_TXNFULL (0)
// 0x00000010 [4] : SM0_TXNFULL (0)
// 0x00000008 [3] : SM3_RXNEMPTY (0)
// 0x00000004 [2] : SM2_RXNEMPTY (0)
// 0x00000002 [1] : SM1_RXNEMPTY (0)
// 0x00000001 [0] : SM0_RXNEMPTY (0)
io_ro_32 intr;
_REG_(PIO_IRQ0_INTE_OFFSET) // PIO_IRQ0_INTE
// Interrupt Enable for irq0
// 0x00000800 [11] : SM3 (0)
// 0x00000400 [10] : SM2 (0)
// 0x00000200 [9] : SM1 (0)
// 0x00000100 [8] : SM0 (0)
// 0x00000080 [7] : SM3_TXNFULL (0)
// 0x00000040 [6] : SM2_TXNFULL (0)
// 0x00000020 [5] : SM1_TXNFULL (0)
// 0x00000010 [4] : SM0_TXNFULL (0)
// 0x00000008 [3] : SM3_RXNEMPTY (0)
// 0x00000004 [2] : SM2_RXNEMPTY (0)
// 0x00000002 [1] : SM1_RXNEMPTY (0)
// 0x00000001 [0] : SM0_RXNEMPTY (0)
io_rw_32 inte0;
_REG_(PIO_IRQ0_INTF_OFFSET) // PIO_IRQ0_INTF
// Interrupt Force for irq0
// 0x00000800 [11] : SM3 (0)
// 0x00000400 [10] : SM2 (0)
// 0x00000200 [9] : SM1 (0)
// 0x00000100 [8] : SM0 (0)
// 0x00000080 [7] : SM3_TXNFULL (0)
// 0x00000040 [6] : SM2_TXNFULL (0)
// 0x00000020 [5] : SM1_TXNFULL (0)
// 0x00000010 [4] : SM0_TXNFULL (0)
// 0x00000008 [3] : SM3_RXNEMPTY (0)
// 0x00000004 [2] : SM2_RXNEMPTY (0)
// 0x00000002 [1] : SM1_RXNEMPTY (0)
// 0x00000001 [0] : SM0_RXNEMPTY (0)
io_rw_32 intf0;
_REG_(PIO_IRQ0_INTS_OFFSET) // PIO_IRQ0_INTS
// Interrupt status after masking & forcing for irq0
// 0x00000800 [11] : SM3 (0)
// 0x00000400 [10] : SM2 (0)
// 0x00000200 [9] : SM1 (0)
// 0x00000100 [8] : SM0 (0)
// 0x00000080 [7] : SM3_TXNFULL (0)
// 0x00000040 [6] : SM2_TXNFULL (0)
// 0x00000020 [5] : SM1_TXNFULL (0)
// 0x00000010 [4] : SM0_TXNFULL (0)
// 0x00000008 [3] : SM3_RXNEMPTY (0)
// 0x00000004 [2] : SM2_RXNEMPTY (0)
// 0x00000002 [1] : SM1_RXNEMPTY (0)
// 0x00000001 [0] : SM0_RXNEMPTY (0)
io_ro_32 ints0;
_REG_(PIO_IRQ1_INTE_OFFSET) // PIO_IRQ1_INTE
// Interrupt Enable for irq1
// 0x00000800 [11] : SM3 (0)
// 0x00000400 [10] : SM2 (0)
// 0x00000200 [9] : SM1 (0)
// 0x00000100 [8] : SM0 (0)
// 0x00000080 [7] : SM3_TXNFULL (0)
// 0x00000040 [6] : SM2_TXNFULL (0)
// 0x00000020 [5] : SM1_TXNFULL (0)
// 0x00000010 [4] : SM0_TXNFULL (0)
// 0x00000008 [3] : SM3_RXNEMPTY (0)
// 0x00000004 [2] : SM2_RXNEMPTY (0)
// 0x00000002 [1] : SM1_RXNEMPTY (0)
// 0x00000001 [0] : SM0_RXNEMPTY (0)
io_rw_32 inte1;
_REG_(PIO_IRQ1_INTF_OFFSET) // PIO_IRQ1_INTF
// Interrupt Force for irq1
// 0x00000800 [11] : SM3 (0)
// 0x00000400 [10] : SM2 (0)
// 0x00000200 [9] : SM1 (0)
// 0x00000100 [8] : SM0 (0)
// 0x00000080 [7] : SM3_TXNFULL (0)
// 0x00000040 [6] : SM2_TXNFULL (0)
// 0x00000020 [5] : SM1_TXNFULL (0)
// 0x00000010 [4] : SM0_TXNFULL (0)
// 0x00000008 [3] : SM3_RXNEMPTY (0)
// 0x00000004 [2] : SM2_RXNEMPTY (0)
// 0x00000002 [1] : SM1_RXNEMPTY (0)
// 0x00000001 [0] : SM0_RXNEMPTY (0)
io_rw_32 intf1;
_REG_(PIO_IRQ1_INTS_OFFSET) // PIO_IRQ1_INTS
// Interrupt status after masking & forcing for irq1
// 0x00000800 [11] : SM3 (0)
// 0x00000400 [10] : SM2 (0)
// 0x00000200 [9] : SM1 (0)
// 0x00000100 [8] : SM0 (0)
// 0x00000080 [7] : SM3_TXNFULL (0)
// 0x00000040 [6] : SM2_TXNFULL (0)
// 0x00000020 [5] : SM1_TXNFULL (0)
// 0x00000010 [4] : SM0_TXNFULL (0)
// 0x00000008 [3] : SM3_RXNEMPTY (0)
// 0x00000004 [2] : SM2_RXNEMPTY (0)
// 0x00000002 [1] : SM1_RXNEMPTY (0)
// 0x00000001 [0] : SM0_RXNEMPTY (0)
io_ro_32 ints1;
} pio_hw_t;
#define pio0_hw ((pio_hw_t *const)PIO0_BASE)
#define pio1_hw ((pio_hw_t *const)PIO1_BASE)
static_assert( NUM_PIO_STATE_MACHINES == 4, "");
static_assert( PIO_INSTRUCTION_COUNT == 32, "");
#endif

View File

@ -1,5 +1,7 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
* Copyright (c) 2021 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
@ -10,11 +12,40 @@
#include "hardware/address_mapped.h"
#include "hardware/regs/pll.h"
// Reference to datasheet: https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf#tab-registerlist_pll
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/pll.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE]: FIELDNAME (RESETVALUE): DESCRIPTION
/// \tag::pll_hw[]
typedef struct {
_REG_(PLL_CS_OFFSET) // PLL_CS
// Control and Status
// 0x80000000 [31] : LOCK (0): PLL is locked
// 0x00000100 [8] : BYPASS (0): Passes the reference clock to the output instead of the divided VCO
// 0x0000003f [5:0] : REFDIV (1): Divides the PLL input reference clock
io_rw_32 cs;
_REG_(PLL_PWR_OFFSET) // PLL_PWR
// Controls the PLL power modes
// 0x00000020 [5] : VCOPD (1): PLL VCO powerdown
// 0x00000008 [3] : POSTDIVPD (1): PLL post divider powerdown
// 0x00000004 [2] : DSMPD (1): PLL DSM powerdown
// 0x00000001 [0] : PD (1): PLL powerdown
io_rw_32 pwr;
_REG_(PLL_FBDIV_INT_OFFSET) // PLL_FBDIV_INT
// Feedback divisor
// 0x00000fff [11:0] : FBDIV_INT (0): see ctrl reg description for constraints
io_rw_32 fbdiv_int;
_REG_(PLL_PRIM_OFFSET) // PLL_PRIM
// Controls the PLL post dividers for the primary output
// 0x00070000 [18:16] : POSTDIV1 (0x7): divide by 1-7
// 0x00007000 [14:12] : POSTDIV2 (0x7): divide by 1-7
io_rw_32 prim;
} pll_hw_t;

View File

@ -1,5 +1,7 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
* Copyright (c) 2021 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
@ -8,14 +10,100 @@
#define _HARDWARE_STRUCTS_PSM_H
#include "hardware/address_mapped.h"
#include "hardware/platform_defs.h"
#include "hardware/regs/psm.h"
// Reference to datasheet: https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf#tab-registerlist_psm
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/psm.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE]: FIELDNAME (RESETVALUE): DESCRIPTION
typedef struct {
_REG_(PSM_FRCE_ON_OFFSET) // PSM_FRCE_ON
// Force block out of reset (i
// 0x00010000 [16] : proc1 (0)
// 0x00008000 [15] : proc0 (0)
// 0x00004000 [14] : sio (0)
// 0x00002000 [13] : vreg_and_chip_reset (0)
// 0x00001000 [12] : xip (0)
// 0x00000800 [11] : sram5 (0)
// 0x00000400 [10] : sram4 (0)
// 0x00000200 [9] : sram3 (0)
// 0x00000100 [8] : sram2 (0)
// 0x00000080 [7] : sram1 (0)
// 0x00000040 [6] : sram0 (0)
// 0x00000020 [5] : rom (0)
// 0x00000010 [4] : busfabric (0)
// 0x00000008 [3] : resets (0)
// 0x00000004 [2] : clocks (0)
// 0x00000002 [1] : xosc (0)
// 0x00000001 [0] : rosc (0)
io_rw_32 frce_on;
_REG_(PSM_FRCE_OFF_OFFSET) // PSM_FRCE_OFF
// Force into reset (i
// 0x00010000 [16] : proc1 (0)
// 0x00008000 [15] : proc0 (0)
// 0x00004000 [14] : sio (0)
// 0x00002000 [13] : vreg_and_chip_reset (0)
// 0x00001000 [12] : xip (0)
// 0x00000800 [11] : sram5 (0)
// 0x00000400 [10] : sram4 (0)
// 0x00000200 [9] : sram3 (0)
// 0x00000100 [8] : sram2 (0)
// 0x00000080 [7] : sram1 (0)
// 0x00000040 [6] : sram0 (0)
// 0x00000020 [5] : rom (0)
// 0x00000010 [4] : busfabric (0)
// 0x00000008 [3] : resets (0)
// 0x00000004 [2] : clocks (0)
// 0x00000002 [1] : xosc (0)
// 0x00000001 [0] : rosc (0)
io_rw_32 frce_off;
_REG_(PSM_WDSEL_OFFSET) // PSM_WDSEL
// Set to 1 if this peripheral should be reset when the watchdog fires
// 0x00010000 [16] : proc1 (0)
// 0x00008000 [15] : proc0 (0)
// 0x00004000 [14] : sio (0)
// 0x00002000 [13] : vreg_and_chip_reset (0)
// 0x00001000 [12] : xip (0)
// 0x00000800 [11] : sram5 (0)
// 0x00000400 [10] : sram4 (0)
// 0x00000200 [9] : sram3 (0)
// 0x00000100 [8] : sram2 (0)
// 0x00000080 [7] : sram1 (0)
// 0x00000040 [6] : sram0 (0)
// 0x00000020 [5] : rom (0)
// 0x00000010 [4] : busfabric (0)
// 0x00000008 [3] : resets (0)
// 0x00000004 [2] : clocks (0)
// 0x00000002 [1] : xosc (0)
// 0x00000001 [0] : rosc (0)
io_rw_32 wdsel;
io_rw_32 done;
_REG_(PSM_DONE_OFFSET) // PSM_DONE
// Indicates the peripheral's registers are ready to access
// 0x00010000 [16] : proc1 (0)
// 0x00008000 [15] : proc0 (0)
// 0x00004000 [14] : sio (0)
// 0x00002000 [13] : vreg_and_chip_reset (0)
// 0x00001000 [12] : xip (0)
// 0x00000800 [11] : sram5 (0)
// 0x00000400 [10] : sram4 (0)
// 0x00000200 [9] : sram3 (0)
// 0x00000100 [8] : sram2 (0)
// 0x00000080 [7] : sram1 (0)
// 0x00000040 [6] : sram0 (0)
// 0x00000020 [5] : rom (0)
// 0x00000010 [4] : busfabric (0)
// 0x00000008 [3] : resets (0)
// 0x00000004 [2] : clocks (0)
// 0x00000002 [1] : xosc (0)
// 0x00000001 [0] : rosc (0)
io_ro_32 done;
} psm_hw_t;
#define psm_hw ((psm_hw_t *const)PSM_BASE)

View File

@ -1,5 +1,7 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
* Copyright (c) 2021 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
@ -8,26 +10,117 @@
#define _HARDWARE_STRUCTS_PWM_H
#include "hardware/address_mapped.h"
#include "hardware/platform_defs.h"
#include "hardware/regs/pwm.h"
// Reference to datasheet: https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf#tab-registerlist_pwm
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/pwm.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE]: FIELDNAME (RESETVALUE): DESCRIPTION
typedef struct pwm_slice_hw {
_REG_(PWM_CH0_CSR_OFFSET) // PWM_CH0_CSR
// Control and status register
// 0x00000080 [7] : PH_ADV (0): Advance the phase of the counter by 1 count, while it is running
// 0x00000040 [6] : PH_RET (0): Retard the phase of the counter by 1 count, while it is running
// 0x00000030 [5:4] : DIVMODE (0)
// 0x00000008 [3] : B_INV (0): Invert output B
// 0x00000004 [2] : A_INV (0): Invert output A
// 0x00000002 [1] : PH_CORRECT (0): 1: Enable phase-correct modulation
// 0x00000001 [0] : EN (0): Enable the PWM channel
io_rw_32 csr;
_REG_(PWM_CH0_DIV_OFFSET) // PWM_CH0_DIV
// INT and FRAC form a fixed-point fractional number
// 0x00000ff0 [11:4] : INT (1)
// 0x0000000f [3:0] : FRAC (0)
io_rw_32 div;
_REG_(PWM_CH0_CTR_OFFSET) // PWM_CH0_CTR
// Direct access to the PWM counter
// 0x0000ffff [15:0] : CH0_CTR (0)
io_rw_32 ctr;
_REG_(PWM_CH0_CC_OFFSET) // PWM_CH0_CC
// Counter compare values
// 0xffff0000 [31:16] : B (0)
// 0x0000ffff [15:0] : A (0)
io_rw_32 cc;
_REG_(PWM_CH0_TOP_OFFSET) // PWM_CH0_TOP
// Counter wrap value
// 0x0000ffff [15:0] : CH0_TOP (0xffff)
io_rw_32 top;
} pwm_slice_hw_t;
typedef struct {
pwm_slice_hw_t slice[NUM_PWM_SLICES];
pwm_slice_hw_t slice[NUM_PWM_SLICES]; // 8
_REG_(PWM_EN_OFFSET) // PWM_EN
// This register aliases the CSR_EN bits for all channels
// 0x00000080 [7] : CH7 (0)
// 0x00000040 [6] : CH6 (0)
// 0x00000020 [5] : CH5 (0)
// 0x00000010 [4] : CH4 (0)
// 0x00000008 [3] : CH3 (0)
// 0x00000004 [2] : CH2 (0)
// 0x00000002 [1] : CH1 (0)
// 0x00000001 [0] : CH0 (0)
io_rw_32 en;
_REG_(PWM_INTR_OFFSET) // PWM_INTR
// Raw Interrupts
// 0x00000080 [7] : CH7 (0)
// 0x00000040 [6] : CH6 (0)
// 0x00000020 [5] : CH5 (0)
// 0x00000010 [4] : CH4 (0)
// 0x00000008 [3] : CH3 (0)
// 0x00000004 [2] : CH2 (0)
// 0x00000002 [1] : CH1 (0)
// 0x00000001 [0] : CH0 (0)
io_rw_32 intr;
_REG_(PWM_INTE_OFFSET) // PWM_INTE
// Interrupt Enable
// 0x00000080 [7] : CH7 (0)
// 0x00000040 [6] : CH6 (0)
// 0x00000020 [5] : CH5 (0)
// 0x00000010 [4] : CH4 (0)
// 0x00000008 [3] : CH3 (0)
// 0x00000004 [2] : CH2 (0)
// 0x00000002 [1] : CH1 (0)
// 0x00000001 [0] : CH0 (0)
io_rw_32 inte;
_REG_(PWM_INTF_OFFSET) // PWM_INTF
// Interrupt Force
// 0x00000080 [7] : CH7 (0)
// 0x00000040 [6] : CH6 (0)
// 0x00000020 [5] : CH5 (0)
// 0x00000010 [4] : CH4 (0)
// 0x00000008 [3] : CH3 (0)
// 0x00000004 [2] : CH2 (0)
// 0x00000002 [1] : CH1 (0)
// 0x00000001 [0] : CH0 (0)
io_rw_32 intf;
io_rw_32 ints;
_REG_(PWM_INTS_OFFSET) // PWM_INTS
// Interrupt status after masking & forcing
// 0x00000080 [7] : CH7 (0)
// 0x00000040 [6] : CH6 (0)
// 0x00000020 [5] : CH5 (0)
// 0x00000010 [4] : CH4 (0)
// 0x00000008 [3] : CH3 (0)
// 0x00000004 [2] : CH2 (0)
// 0x00000002 [1] : CH1 (0)
// 0x00000001 [0] : CH0 (0)
io_ro_32 ints;
} pwm_hw_t;
#define pwm_hw ((pwm_hw_t *const)PWM_BASE)
static_assert( NUM_PWM_SLICES == 8, "");
#endif

View File

@ -1,19 +1,113 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
* Copyright (c) 2021 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_RESETS_H
#define _HARDWARE_STRUCTS_RESETS_H
#include "hardware/address_mapped.h"
#include "hardware/regs/resets.h"
// Reference to datasheet: https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf#tab-registerlist_resets
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/resets.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE]: FIELDNAME (RESETVALUE): DESCRIPTION
/// \tag::resets_hw[]
typedef struct {
_REG_(RESETS_RESET_OFFSET) // RESETS_RESET
// Reset control
// 0x01000000 [24] : usbctrl (1)
// 0x00800000 [23] : uart1 (1)
// 0x00400000 [22] : uart0 (1)
// 0x00200000 [21] : timer (1)
// 0x00100000 [20] : tbman (1)
// 0x00080000 [19] : sysinfo (1)
// 0x00040000 [18] : syscfg (1)
// 0x00020000 [17] : spi1 (1)
// 0x00010000 [16] : spi0 (1)
// 0x00008000 [15] : rtc (1)
// 0x00004000 [14] : pwm (1)
// 0x00002000 [13] : pll_usb (1)
// 0x00001000 [12] : pll_sys (1)
// 0x00000800 [11] : pio1 (1)
// 0x00000400 [10] : pio0 (1)
// 0x00000200 [9] : pads_qspi (1)
// 0x00000100 [8] : pads_bank0 (1)
// 0x00000080 [7] : jtag (1)
// 0x00000040 [6] : io_qspi (1)
// 0x00000020 [5] : io_bank0 (1)
// 0x00000010 [4] : i2c1 (1)
// 0x00000008 [3] : i2c0 (1)
// 0x00000004 [2] : dma (1)
// 0x00000002 [1] : busctrl (1)
// 0x00000001 [0] : adc (1)
io_rw_32 reset;
_REG_(RESETS_WDSEL_OFFSET) // RESETS_WDSEL
// Watchdog select
// 0x01000000 [24] : usbctrl (0)
// 0x00800000 [23] : uart1 (0)
// 0x00400000 [22] : uart0 (0)
// 0x00200000 [21] : timer (0)
// 0x00100000 [20] : tbman (0)
// 0x00080000 [19] : sysinfo (0)
// 0x00040000 [18] : syscfg (0)
// 0x00020000 [17] : spi1 (0)
// 0x00010000 [16] : spi0 (0)
// 0x00008000 [15] : rtc (0)
// 0x00004000 [14] : pwm (0)
// 0x00002000 [13] : pll_usb (0)
// 0x00001000 [12] : pll_sys (0)
// 0x00000800 [11] : pio1 (0)
// 0x00000400 [10] : pio0 (0)
// 0x00000200 [9] : pads_qspi (0)
// 0x00000100 [8] : pads_bank0 (0)
// 0x00000080 [7] : jtag (0)
// 0x00000040 [6] : io_qspi (0)
// 0x00000020 [5] : io_bank0 (0)
// 0x00000010 [4] : i2c1 (0)
// 0x00000008 [3] : i2c0 (0)
// 0x00000004 [2] : dma (0)
// 0x00000002 [1] : busctrl (0)
// 0x00000001 [0] : adc (0)
io_rw_32 wdsel;
io_rw_32 reset_done;
_REG_(RESETS_RESET_DONE_OFFSET) // RESETS_RESET_DONE
// Reset done
// 0x01000000 [24] : usbctrl (0)
// 0x00800000 [23] : uart1 (0)
// 0x00400000 [22] : uart0 (0)
// 0x00200000 [21] : timer (0)
// 0x00100000 [20] : tbman (0)
// 0x00080000 [19] : sysinfo (0)
// 0x00040000 [18] : syscfg (0)
// 0x00020000 [17] : spi1 (0)
// 0x00010000 [16] : spi0 (0)
// 0x00008000 [15] : rtc (0)
// 0x00004000 [14] : pwm (0)
// 0x00002000 [13] : pll_usb (0)
// 0x00001000 [12] : pll_sys (0)
// 0x00000800 [11] : pio1 (0)
// 0x00000400 [10] : pio0 (0)
// 0x00000200 [9] : pads_qspi (0)
// 0x00000100 [8] : pads_bank0 (0)
// 0x00000080 [7] : jtag (0)
// 0x00000040 [6] : io_qspi (0)
// 0x00000020 [5] : io_bank0 (0)
// 0x00000010 [4] : i2c1 (0)
// 0x00000008 [3] : i2c0 (0)
// 0x00000004 [2] : dma (0)
// 0x00000002 [1] : busctrl (0)
// 0x00000001 [0] : adc (0)
io_ro_32 reset_done;
} resets_hw_t;
#define resets_hw ((resets_hw_t *const)RESETS_BASE)

View File

@ -1,5 +1,7 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
* Copyright (c) 2021 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
@ -8,20 +10,75 @@
#define _HARDWARE_STRUCTS_ROSC_H
#include "hardware/address_mapped.h"
#include "hardware/platform_defs.h"
#include "hardware/regs/rosc.h"
// Reference to datasheet: https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf#tab-registerlist_rosc
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/rosc.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE]: FIELDNAME (RESETVALUE): DESCRIPTION
typedef struct {
_REG_(ROSC_CTRL_OFFSET) // ROSC_CTRL
// Ring Oscillator control
// 0x00fff000 [23:12] : ENABLE (0): On power-up this field is initialised to ENABLE
// 0x00000fff [11:0] : FREQ_RANGE (0xaa0): Controls the number of delay stages in the ROSC ring
io_rw_32 ctrl;
_REG_(ROSC_FREQA_OFFSET) // ROSC_FREQA
// The FREQA & FREQB registers control the frequency by controlling the drive strength of each stage
// 0xffff0000 [31:16] : PASSWD (0): Set to 0x9696 to apply the settings
// 0x00007000 [14:12] : DS3 (0): Stage 3 drive strength
// 0x00000700 [10:8] : DS2 (0): Stage 2 drive strength
// 0x00000070 [6:4] : DS1 (0): Stage 1 drive strength
// 0x00000007 [2:0] : DS0 (0): Stage 0 drive strength
io_rw_32 freqa;
_REG_(ROSC_FREQB_OFFSET) // ROSC_FREQB
// For a detailed description see freqa register
// 0xffff0000 [31:16] : PASSWD (0): Set to 0x9696 to apply the settings
// 0x00007000 [14:12] : DS7 (0): Stage 7 drive strength
// 0x00000700 [10:8] : DS6 (0): Stage 6 drive strength
// 0x00000070 [6:4] : DS5 (0): Stage 5 drive strength
// 0x00000007 [2:0] : DS4 (0): Stage 4 drive strength
io_rw_32 freqb;
_REG_(ROSC_DORMANT_OFFSET) // ROSC_DORMANT
// Ring Oscillator pause control
io_rw_32 dormant;
_REG_(ROSC_DIV_OFFSET) // ROSC_DIV
// Controls the output divider
// 0x00000fff [11:0] : DIV (0): set to 0xaa0 + div where
io_rw_32 div;
_REG_(ROSC_PHASE_OFFSET) // ROSC_PHASE
// Controls the phase shifted output
// 0x00000ff0 [11:4] : PASSWD (0): set to 0xaa
// 0x00000008 [3] : ENABLE (1): enable the phase-shifted output
// 0x00000004 [2] : FLIP (0): invert the phase-shifted output
// 0x00000003 [1:0] : SHIFT (0): phase shift the phase-shifted output by SHIFT input clocks
io_rw_32 phase;
_REG_(ROSC_STATUS_OFFSET) // ROSC_STATUS
// Ring Oscillator Status
// 0x80000000 [31] : STABLE (0): Oscillator is running and stable
// 0x01000000 [24] : BADWRITE (0): An invalid value has been written to CTRL_ENABLE or CTRL_FREQ_RANGE or FREQA or...
// 0x00010000 [16] : DIV_RUNNING (0): post-divider is running
// 0x00001000 [12] : ENABLED (0): Oscillator is enabled but not necessarily running and stable
io_rw_32 status;
io_rw_32 randombit;
_REG_(ROSC_RANDOMBIT_OFFSET) // ROSC_RANDOMBIT
// This just reads the state of the oscillator output so randomness is compromised if the ring oscillator is stopped or...
// 0x00000001 [0] : RANDOMBIT (1)
io_ro_32 randombit;
_REG_(ROSC_COUNT_OFFSET) // ROSC_COUNT
// A down counter running at the ROSC frequency which counts to zero and stops
// 0x000000ff [7:0] : COUNT (0)
io_rw_32 count;
io_rw_32 dftx;
} rosc_hw_t;
#define rosc_hw ((rosc_hw_t *const)ROSC_BASE)

View File

@ -1,5 +1,7 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
* Copyright (c) 2021 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
@ -8,22 +10,103 @@
#define _HARDWARE_STRUCTS_RTC_H
#include "hardware/address_mapped.h"
#include "hardware/platform_defs.h"
#include "hardware/regs/rtc.h"
// Reference to datasheet: https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf#tab-registerlist_rtc
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/rtc.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE]: FIELDNAME (RESETVALUE): DESCRIPTION
typedef struct {
_REG_(RTC_CLKDIV_M1_OFFSET) // RTC_CLKDIV_M1
// Divider minus 1 for the 1 second counter
// 0x0000ffff [15:0] : CLKDIV_M1 (0)
io_rw_32 clkdiv_m1;
_REG_(RTC_SETUP_0_OFFSET) // RTC_SETUP_0
// RTC setup register 0
// 0x00fff000 [23:12] : YEAR (0): Year
// 0x00000f00 [11:8] : MONTH (0): Month (1
// 0x0000001f [4:0] : DAY (0): Day of the month (1
io_rw_32 setup_0;
_REG_(RTC_SETUP_1_OFFSET) // RTC_SETUP_1
// RTC setup register 1
// 0x07000000 [26:24] : DOTW (0): Day of the week: 1-Monday
// 0x001f0000 [20:16] : HOUR (0): Hours
// 0x00003f00 [13:8] : MIN (0): Minutes
// 0x0000003f [5:0] : SEC (0): Seconds
io_rw_32 setup_1;
_REG_(RTC_CTRL_OFFSET) // RTC_CTRL
// RTC Control and status
// 0x00000100 [8] : FORCE_NOTLEAPYEAR (0): If set, leapyear is forced off
// 0x00000010 [4] : LOAD (0): Load RTC
// 0x00000002 [1] : RTC_ACTIVE (0): RTC enabled (running)
// 0x00000001 [0] : RTC_ENABLE (0): Enable RTC
io_rw_32 ctrl;
_REG_(RTC_IRQ_SETUP_0_OFFSET) // RTC_IRQ_SETUP_0
// Interrupt setup register 0
// 0x20000000 [29] : MATCH_ACTIVE (0)
// 0x10000000 [28] : MATCH_ENA (0): Global match enable
// 0x04000000 [26] : YEAR_ENA (0): Enable year matching
// 0x02000000 [25] : MONTH_ENA (0): Enable month matching
// 0x01000000 [24] : DAY_ENA (0): Enable day matching
// 0x00fff000 [23:12] : YEAR (0): Year
// 0x00000f00 [11:8] : MONTH (0): Month (1
// 0x0000001f [4:0] : DAY (0): Day of the month (1
io_rw_32 irq_setup_0;
_REG_(RTC_IRQ_SETUP_1_OFFSET) // RTC_IRQ_SETUP_1
// Interrupt setup register 1
// 0x80000000 [31] : DOTW_ENA (0): Enable day of the week matching
// 0x40000000 [30] : HOUR_ENA (0): Enable hour matching
// 0x20000000 [29] : MIN_ENA (0): Enable minute matching
// 0x10000000 [28] : SEC_ENA (0): Enable second matching
// 0x07000000 [26:24] : DOTW (0): Day of the week
// 0x001f0000 [20:16] : HOUR (0): Hours
// 0x00003f00 [13:8] : MIN (0): Minutes
// 0x0000003f [5:0] : SEC (0): Seconds
io_rw_32 irq_setup_1;
io_rw_32 rtc_1;
io_rw_32 rtc_0;
io_rw_32 intr;
_REG_(RTC_RTC_1_OFFSET) // RTC_RTC_1
// RTC register 1
// 0x00fff000 [23:12] : YEAR (0): Year
// 0x00000f00 [11:8] : MONTH (0): Month (1
// 0x0000001f [4:0] : DAY (0): Day of the month (1
io_ro_32 rtc_1;
_REG_(RTC_RTC_0_OFFSET) // RTC_RTC_0
// RTC register 0
// 0x07000000 [26:24] : DOTW (0): Day of the week
// 0x001f0000 [20:16] : HOUR (0): Hours
// 0x00003f00 [13:8] : MIN (0): Minutes
// 0x0000003f [5:0] : SEC (0): Seconds
io_ro_32 rtc_0;
_REG_(RTC_INTR_OFFSET) // RTC_INTR
// Raw Interrupts
// 0x00000001 [0] : RTC (0)
io_ro_32 intr;
_REG_(RTC_INTE_OFFSET) // RTC_INTE
// Interrupt Enable
// 0x00000001 [0] : RTC (0)
io_rw_32 inte;
_REG_(RTC_INTF_OFFSET) // RTC_INTF
// Interrupt Force
// 0x00000001 [0] : RTC (0)
io_rw_32 intf;
io_rw_32 ints;
_REG_(RTC_INTS_OFFSET) // RTC_INTS
// Interrupt status after masking & forcing
// 0x00000001 [0] : RTC (0)
io_ro_32 ints;
} rtc_hw_t;
#define rtc_hw ((rtc_hw_t *const)RTC_BASE)

View File

@ -1,22 +1,67 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
* Copyright (c) 2021 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_SCB_H
#define _HARDWARE_STRUCTS_SCB_H
#include "hardware/address_mapped.h"
#include "hardware/regs/m0plus.h"
// SCB == System Control Block
// Reference to datasheet: https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf#tab-registerlist_m0plus
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/m0plus.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE]: FIELDNAME (RESETVALUE): DESCRIPTION
typedef struct {
_REG_(M0PLUS_CPUID_OFFSET) // M0PLUS_CPUID
// Read the CPU ID Base Register to determine: the ID number of the processor core, the version number of the processor...
// 0xff000000 [31:24] : IMPLEMENTER (0x41): Implementor code: 0x41 = ARM
// 0x00f00000 [23:20] : VARIANT (0): Major revision number n in the rnpm revision status:
// 0x000f0000 [19:16] : ARCHITECTURE (0xc): Constant that defines the architecture of the processor:
// 0x0000fff0 [15:4] : PARTNO (0xc60): Number of processor within family: 0xC60 = Cortex-M0+
// 0x0000000f [3:0] : REVISION (1): Minor revision number m in the rnpm revision status:
io_ro_32 cpuid;
_REG_(M0PLUS_ICSR_OFFSET) // M0PLUS_ICSR
// Use the Interrupt Control State Register to set a pending Non-Maskable Interrupt (NMI), set or clear a pending...
// 0x80000000 [31] : NMIPENDSET (0): Setting this bit will activate an NMI
// 0x10000000 [28] : PENDSVSET (0): PendSV set-pending bit
// 0x08000000 [27] : PENDSVCLR (0): PendSV clear-pending bit
// 0x04000000 [26] : PENDSTSET (0): SysTick exception set-pending bit
// 0x02000000 [25] : PENDSTCLR (0): SysTick exception clear-pending bit
// 0x00800000 [23] : ISRPREEMPT (0): The system can only access this bit when the core is halted
// 0x00400000 [22] : ISRPENDING (0): External interrupt pending flag
// 0x001ff000 [20:12] : VECTPENDING (0): Indicates the exception number for the highest priority pending exception: 0 =...
// 0x000001ff [8:0] : VECTACTIVE (0): Active exception number field
io_rw_32 icsr;
_REG_(M0PLUS_VTOR_OFFSET) // M0PLUS_VTOR
// The VTOR holds the vector table offset address
// 0xffffff00 [31:8] : TBLOFF (0): Bits [31:8] of the indicate the vector table offset address
io_rw_32 vtor;
_REG_(M0PLUS_AIRCR_OFFSET) // M0PLUS_AIRCR
// Use the Application Interrupt and Reset Control Register to: determine data endianness, clear all active state...
// 0xffff0000 [31:16] : VECTKEY (0): Register key:
// 0x00008000 [15] : ENDIANESS (0): Data endianness implemented:
// 0x00000004 [2] : SYSRESETREQ (0): Writing 1 to this bit causes the SYSRESETREQ signal to the outer system to be...
// 0x00000002 [1] : VECTCLRACTIVE (0): Clears all active state information for fixed and configurable exceptions
io_rw_32 aircr;
_REG_(M0PLUS_SCR_OFFSET) // M0PLUS_SCR
// System Control Register
// 0x00000010 [4] : SEVONPEND (0): Send Event on Pending bit:
// 0x00000004 [2] : SLEEPDEEP (0): Controls whether the processor uses sleep or deep sleep as its low power mode:
// 0x00000002 [1] : SLEEPONEXIT (0): Indicates sleep-on-exit when returning from Handler mode to Thread mode:
io_rw_32 scr;
// ...
} armv6m_scb_t;
#define scb_hw ((armv6m_scb_t *const)(PPB_BASE + M0PLUS_CPUID_OFFSET))

View File

@ -1,5 +1,7 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
* Copyright (c) 2021 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
@ -11,51 +13,164 @@
#include "hardware/regs/sio.h"
#include "hardware/structs/interp.h"
typedef struct {
io_ro_32 cpuid;
io_ro_32 gpio_in;
io_ro_32 gpio_hi_in;
uint32_t _pad;
// Reference to datasheet: https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf#tab-registerlist_sio
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/sio.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE]: FIELDNAME (RESETVALUE): DESCRIPTION
typedef struct {
_REG_(SIO_CPUID_OFFSET) // SIO_CPUID
// Processor core identifier
io_ro_32 cpuid;
_REG_(SIO_GPIO_IN_OFFSET) // SIO_GPIO_IN
// Input value for GPIO pins
// 0x3fffffff [29:0] : GPIO_IN (0): Input value for GPIO0
io_ro_32 gpio_in;
_REG_(SIO_GPIO_HI_IN_OFFSET) // SIO_GPIO_HI_IN
// Input value for QSPI pins
// 0x0000003f [5:0] : GPIO_HI_IN (0): Input value on QSPI IO in order 0
io_ro_32 gpio_hi_in;
uint32_t _pad0;
_REG_(SIO_GPIO_OUT_OFFSET) // SIO_GPIO_OUT
// GPIO output value
// 0x3fffffff [29:0] : GPIO_OUT (0): Set output level (1/0 -> high/low) for GPIO0
io_rw_32 gpio_out;
_REG_(SIO_GPIO_OUT_SET_OFFSET) // SIO_GPIO_OUT_SET
// GPIO output value set
// 0x3fffffff [29:0] : GPIO_OUT_SET (0): Perform an atomic bit-set on GPIO_OUT, i
io_wo_32 gpio_set;
_REG_(SIO_GPIO_OUT_CLR_OFFSET) // SIO_GPIO_OUT_CLR
// GPIO output value clear
// 0x3fffffff [29:0] : GPIO_OUT_CLR (0): Perform an atomic bit-clear on GPIO_OUT, i
io_wo_32 gpio_clr;
_REG_(SIO_GPIO_OUT_XOR_OFFSET) // SIO_GPIO_OUT_XOR
// GPIO output value XOR
// 0x3fffffff [29:0] : GPIO_OUT_XOR (0): Perform an atomic bitwise XOR on GPIO_OUT, i
io_wo_32 gpio_togl;
io_wo_32 gpio_oe;
_REG_(SIO_GPIO_OE_OFFSET) // SIO_GPIO_OE
// GPIO output enable
// 0x3fffffff [29:0] : GPIO_OE (0): Set output enable (1/0 -> output/input) for GPIO0
io_rw_32 gpio_oe;
_REG_(SIO_GPIO_OE_SET_OFFSET) // SIO_GPIO_OE_SET
// GPIO output enable set
// 0x3fffffff [29:0] : GPIO_OE_SET (0): Perform an atomic bit-set on GPIO_OE, i
io_wo_32 gpio_oe_set;
_REG_(SIO_GPIO_OE_CLR_OFFSET) // SIO_GPIO_OE_CLR
// GPIO output enable clear
// 0x3fffffff [29:0] : GPIO_OE_CLR (0): Perform an atomic bit-clear on GPIO_OE, i
io_wo_32 gpio_oe_clr;
_REG_(SIO_GPIO_OE_XOR_OFFSET) // SIO_GPIO_OE_XOR
// GPIO output enable XOR
// 0x3fffffff [29:0] : GPIO_OE_XOR (0): Perform an atomic bitwise XOR on GPIO_OE, i
io_wo_32 gpio_oe_togl;
_REG_(SIO_GPIO_HI_OUT_OFFSET) // SIO_GPIO_HI_OUT
// QSPI output value
// 0x0000003f [5:0] : GPIO_HI_OUT (0): Set output level (1/0 -> high/low) for QSPI IO0
io_rw_32 gpio_hi_out;
_REG_(SIO_GPIO_HI_OUT_SET_OFFSET) // SIO_GPIO_HI_OUT_SET
// QSPI output value set
// 0x0000003f [5:0] : GPIO_HI_OUT_SET (0): Perform an atomic bit-set on GPIO_HI_OUT, i
io_wo_32 gpio_hi_set;
_REG_(SIO_GPIO_HI_OUT_CLR_OFFSET) // SIO_GPIO_HI_OUT_CLR
// QSPI output value clear
// 0x0000003f [5:0] : GPIO_HI_OUT_CLR (0): Perform an atomic bit-clear on GPIO_HI_OUT, i
io_wo_32 gpio_hi_clr;
_REG_(SIO_GPIO_HI_OUT_XOR_OFFSET) // SIO_GPIO_HI_OUT_XOR
// QSPI output value XOR
// 0x0000003f [5:0] : GPIO_HI_OUT_XOR (0): Perform an atomic bitwise XOR on GPIO_HI_OUT, i
io_wo_32 gpio_hi_togl;
io_wo_32 gpio_hi_oe;
_REG_(SIO_GPIO_HI_OE_OFFSET) // SIO_GPIO_HI_OE
// QSPI output enable
// 0x0000003f [5:0] : GPIO_HI_OE (0): Set output enable (1/0 -> output/input) for QSPI IO0
io_rw_32 gpio_hi_oe;
_REG_(SIO_GPIO_HI_OE_SET_OFFSET) // SIO_GPIO_HI_OE_SET
// QSPI output enable set
// 0x0000003f [5:0] : GPIO_HI_OE_SET (0): Perform an atomic bit-set on GPIO_HI_OE, i
io_wo_32 gpio_hi_oe_set;
_REG_(SIO_GPIO_HI_OE_CLR_OFFSET) // SIO_GPIO_HI_OE_CLR
// QSPI output enable clear
// 0x0000003f [5:0] : GPIO_HI_OE_CLR (0): Perform an atomic bit-clear on GPIO_HI_OE, i
io_wo_32 gpio_hi_oe_clr;
_REG_(SIO_GPIO_HI_OE_XOR_OFFSET) // SIO_GPIO_HI_OE_XOR
// QSPI output enable XOR
// 0x0000003f [5:0] : GPIO_HI_OE_XOR (0): Perform an atomic bitwise XOR on GPIO_HI_OE, i
io_wo_32 gpio_hi_oe_togl;
_REG_(SIO_FIFO_ST_OFFSET) // SIO_FIFO_ST
// Status register for inter-core FIFOs (mailboxes)
// 0x00000008 [3] : ROE (0): Sticky flag indicating the RX FIFO was read when empty
// 0x00000004 [2] : WOF (0): Sticky flag indicating the TX FIFO was written when full
// 0x00000002 [1] : RDY (1): Value is 1 if this core's TX FIFO is not full (i
// 0x00000001 [0] : VLD (0): Value is 1 if this core's RX FIFO is not empty (i
io_rw_32 fifo_st;
_REG_(SIO_FIFO_WR_OFFSET) // SIO_FIFO_WR
// Write access to this core's TX FIFO
io_wo_32 fifo_wr;
_REG_(SIO_FIFO_RD_OFFSET) // SIO_FIFO_RD
// Read access to this core's RX FIFO
io_ro_32 fifo_rd;
_REG_(SIO_SPINLOCK_ST_OFFSET) // SIO_SPINLOCK_ST
// Spinlock state
io_ro_32 spinlock_st;
_REG_(SIO_DIV_UDIVIDEND_OFFSET) // SIO_DIV_UDIVIDEND
// Divider unsigned dividend
io_rw_32 div_udividend;
_REG_(SIO_DIV_UDIVISOR_OFFSET) // SIO_DIV_UDIVISOR
// Divider unsigned divisor
io_rw_32 div_udivisor;
_REG_(SIO_DIV_SDIVIDEND_OFFSET) // SIO_DIV_SDIVIDEND
// Divider signed dividend
io_rw_32 div_sdividend;
_REG_(SIO_DIV_SDIVISOR_OFFSET) // SIO_DIV_SDIVISOR
// Divider signed divisor
io_rw_32 div_sdivisor;
_REG_(SIO_DIV_QUOTIENT_OFFSET) // SIO_DIV_QUOTIENT
// Divider result quotient
io_rw_32 div_quotient;
_REG_(SIO_DIV_REMAINDER_OFFSET) // SIO_DIV_REMAINDER
// Divider result remainder
io_rw_32 div_remainder;
io_rw_32 div_csr;
uint32_t _pad2;
_REG_(SIO_DIV_CSR_OFFSET) // SIO_DIV_CSR
// Control and status register for divider
// 0x00000002 [1] : DIRTY (0): Changes to 1 when any register is written, and back to 0 when QUOTIENT is read
// 0x00000001 [0] : READY (1): Reads as 0 when a calculation is in progress, 1 otherwise
io_ro_32 div_csr;
uint32_t _pad1;
interp_hw_t interp[2];
} sio_hw_t;
#define sio_hw ((sio_hw_t *)SIO_BASE)
#define sio_hw ((sio_hw_t *const)SIO_BASE)
#endif

View File

@ -1,5 +1,7 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
* Copyright (c) 2021 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
@ -10,16 +12,85 @@
#include "hardware/address_mapped.h"
#include "hardware/regs/spi.h"
// Reference to datasheet: https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf#tab-registerlist_spi
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/spi.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE]: FIELDNAME (RESETVALUE): DESCRIPTION
typedef struct {
_REG_(SPI_SSPCR0_OFFSET) // SPI_SSPCR0
// Control register 0, SSPCR0 on page 3-4
// 0x0000ff00 [15:8] : SCR (0): Serial clock rate
// 0x00000080 [7] : SPH (0): SSPCLKOUT phase, applicable to Motorola SPI frame format only
// 0x00000040 [6] : SPO (0): SSPCLKOUT polarity, applicable to Motorola SPI frame format only
// 0x00000030 [5:4] : FRF (0): Frame format: 00 Motorola SPI frame format
// 0x0000000f [3:0] : DSS (0): Data Size Select: 0000 Reserved, undefined operation
io_rw_32 cr0;
_REG_(SPI_SSPCR1_OFFSET) // SPI_SSPCR1
// Control register 1, SSPCR1 on page 3-5
// 0x00000008 [3] : SOD (0): Slave-mode output disable
// 0x00000004 [2] : MS (0): Master or slave mode select
// 0x00000002 [1] : SSE (0): Synchronous serial port enable: 0 SSP operation disabled
// 0x00000001 [0] : LBM (0): Loop back mode: 0 Normal serial port operation enabled
io_rw_32 cr1;
_REG_(SPI_SSPDR_OFFSET) // SPI_SSPDR
// Data register, SSPDR on page 3-6
// 0x0000ffff [15:0] : DATA (0): Transmit/Receive FIFO: Read Receive FIFO
io_rw_32 dr;
io_rw_32 sr;
_REG_(SPI_SSPSR_OFFSET) // SPI_SSPSR
// Status register, SSPSR on page 3-7
// 0x00000010 [4] : BSY (0): PrimeCell SSP busy flag, RO: 0 SSP is idle
// 0x00000008 [3] : RFF (0): Receive FIFO full, RO: 0 Receive FIFO is not full
// 0x00000004 [2] : RNE (0): Receive FIFO not empty, RO: 0 Receive FIFO is empty
// 0x00000002 [1] : TNF (1): Transmit FIFO not full, RO: 0 Transmit FIFO is full
// 0x00000001 [0] : TFE (1): Transmit FIFO empty, RO: 0 Transmit FIFO is not empty
io_ro_32 sr;
_REG_(SPI_SSPCPSR_OFFSET) // SPI_SSPCPSR
// Clock prescale register, SSPCPSR on page 3-8
// 0x000000ff [7:0] : CPSDVSR (0): Clock prescale divisor
io_rw_32 cpsr;
_REG_(SPI_SSPIMSC_OFFSET) // SPI_SSPIMSC
// Interrupt mask set or clear register, SSPIMSC on page 3-9
// 0x00000008 [3] : TXIM (0): Transmit FIFO interrupt mask: 0 Transmit FIFO half empty or less condition interrupt is masked
// 0x00000004 [2] : RXIM (0): Receive FIFO interrupt mask: 0 Receive FIFO half full or less condition interrupt is masked
// 0x00000002 [1] : RTIM (0): Receive timeout interrupt mask: 0 Receive FIFO not empty and no read prior to timeout...
// 0x00000001 [0] : RORIM (0): Receive overrun interrupt mask: 0 Receive FIFO written to while full condition...
io_rw_32 imsc;
io_rw_32 ris;
io_rw_32 mis;
_REG_(SPI_SSPRIS_OFFSET) // SPI_SSPRIS
// Raw interrupt status register, SSPRIS on page 3-10
// 0x00000008 [3] : TXRIS (1): Gives the raw interrupt state, prior to masking, of the SSPTXINTR interrupt
// 0x00000004 [2] : RXRIS (0): Gives the raw interrupt state, prior to masking, of the SSPRXINTR interrupt
// 0x00000002 [1] : RTRIS (0): Gives the raw interrupt state, prior to masking, of the SSPRTINTR interrupt
// 0x00000001 [0] : RORRIS (0): Gives the raw interrupt state, prior to masking, of the SSPRORINTR interrupt
io_ro_32 ris;
_REG_(SPI_SSPMIS_OFFSET) // SPI_SSPMIS
// Masked interrupt status register, SSPMIS on page 3-11
// 0x00000008 [3] : TXMIS (0): Gives the transmit FIFO masked interrupt state, after masking, of the SSPTXINTR interrupt
// 0x00000004 [2] : RXMIS (0): Gives the receive FIFO masked interrupt state, after masking, of the SSPRXINTR interrupt
// 0x00000002 [1] : RTMIS (0): Gives the receive timeout masked interrupt state, after masking, of the SSPRTINTR interrupt
// 0x00000001 [0] : RORMIS (0): Gives the receive over run masked interrupt status, after masking, of the...
io_ro_32 mis;
_REG_(SPI_SSPICR_OFFSET) // SPI_SSPICR
// Interrupt clear register, SSPICR on page 3-11
// 0x00000002 [1] : RTIC (0): Clears the SSPRTINTR interrupt
// 0x00000001 [0] : RORIC (0): Clears the SSPRORINTR interrupt
io_rw_32 icr;
_REG_(SPI_SSPDMACR_OFFSET) // SPI_SSPDMACR
// DMA control register, SSPDMACR on page 3-12
// 0x00000002 [1] : TXDMAE (0): Transmit DMA Enable
// 0x00000001 [0] : RXDMAE (0): Receive DMA Enable
io_rw_32 dmacr;
} spi_hw_t;

View File

@ -1,5 +1,7 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
* Copyright (c) 2021 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
@ -8,40 +10,201 @@
#define _HARDWARE_STRUCTS_SSI_H
#include "hardware/address_mapped.h"
#include "hardware/platform_defs.h"
#include "hardware/regs/ssi.h"
// Reference to datasheet: https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf#tab-registerlist_ssi
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/ssi.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE]: FIELDNAME (RESETVALUE): DESCRIPTION
typedef struct {
_REG_(SSI_CTRLR0_OFFSET) // SSI_CTRLR0
// Control register 0
// 0x01000000 [24] : SSTE (0): Slave select toggle enable
// 0x00600000 [22:21] : SPI_FRF (0): SPI frame format
// 0x001f0000 [20:16] : DFS_32 (0): Data frame size in 32b transfer mode
// 0x0000f000 [15:12] : CFS (0): Control frame size
// 0x00000800 [11] : SRL (0): Shift register loop (test mode)
// 0x00000400 [10] : SLV_OE (0): Slave output enable
// 0x00000300 [9:8] : TMOD (0): Transfer mode
// 0x00000080 [7] : SCPOL (0): Serial clock polarity
// 0x00000040 [6] : SCPH (0): Serial clock phase
// 0x00000030 [5:4] : FRF (0): Frame format
// 0x0000000f [3:0] : DFS (0): Data frame size
io_rw_32 ctrlr0;
_REG_(SSI_CTRLR1_OFFSET) // SSI_CTRLR1
// Master Control register 1
// 0x0000ffff [15:0] : NDF (0): Number of data frames
io_rw_32 ctrlr1;
_REG_(SSI_SSIENR_OFFSET) // SSI_SSIENR
// SSI Enable
// 0x00000001 [0] : SSI_EN (0): SSI enable
io_rw_32 ssienr;
_REG_(SSI_MWCR_OFFSET) // SSI_MWCR
// Microwire Control
// 0x00000004 [2] : MHS (0): Microwire handshaking
// 0x00000002 [1] : MDD (0): Microwire control
// 0x00000001 [0] : MWMOD (0): Microwire transfer mode
io_rw_32 mwcr;
_REG_(SSI_SER_OFFSET) // SSI_SER
// Slave enable
// 0x00000001 [0] : SER (0): For each bit:
io_rw_32 ser;
_REG_(SSI_BAUDR_OFFSET) // SSI_BAUDR
// Baud rate
// 0x0000ffff [15:0] : SCKDV (0): SSI clock divider
io_rw_32 baudr;
_REG_(SSI_TXFTLR_OFFSET) // SSI_TXFTLR
// TX FIFO threshold level
// 0x000000ff [7:0] : TFT (0): Transmit FIFO threshold
io_rw_32 txftlr;
_REG_(SSI_RXFTLR_OFFSET) // SSI_RXFTLR
// RX FIFO threshold level
// 0x000000ff [7:0] : RFT (0): Receive FIFO threshold
io_rw_32 rxftlr;
io_rw_32 txflr;
io_rw_32 rxflr;
io_rw_32 sr;
_REG_(SSI_TXFLR_OFFSET) // SSI_TXFLR
// TX FIFO level
// 0x000000ff [7:0] : TFTFL (0): Transmit FIFO level
io_ro_32 txflr;
_REG_(SSI_RXFLR_OFFSET) // SSI_RXFLR
// RX FIFO level
// 0x000000ff [7:0] : RXTFL (0): Receive FIFO level
io_ro_32 rxflr;
_REG_(SSI_SR_OFFSET) // SSI_SR
// Status register
// 0x00000040 [6] : DCOL (0): Data collision error
// 0x00000020 [5] : TXE (0): Transmission error
// 0x00000010 [4] : RFF (0): Receive FIFO full
// 0x00000008 [3] : RFNE (0): Receive FIFO not empty
// 0x00000004 [2] : TFE (0): Transmit FIFO empty
// 0x00000002 [1] : TFNF (0): Transmit FIFO not full
// 0x00000001 [0] : BUSY (0): SSI busy flag
io_ro_32 sr;
_REG_(SSI_IMR_OFFSET) // SSI_IMR
// Interrupt mask
// 0x00000020 [5] : MSTIM (0): Multi-master contention interrupt mask
// 0x00000010 [4] : RXFIM (0): Receive FIFO full interrupt mask
// 0x00000008 [3] : RXOIM (0): Receive FIFO overflow interrupt mask
// 0x00000004 [2] : RXUIM (0): Receive FIFO underflow interrupt mask
// 0x00000002 [1] : TXOIM (0): Transmit FIFO overflow interrupt mask
// 0x00000001 [0] : TXEIM (0): Transmit FIFO empty interrupt mask
io_rw_32 imr;
io_rw_32 isr;
io_rw_32 risr;
io_rw_32 txoicr;
io_rw_32 rxoicr;
io_rw_32 rxuicr;
io_rw_32 msticr;
io_rw_32 icr;
_REG_(SSI_ISR_OFFSET) // SSI_ISR
// Interrupt status
// 0x00000020 [5] : MSTIS (0): Multi-master contention interrupt status
// 0x00000010 [4] : RXFIS (0): Receive FIFO full interrupt status
// 0x00000008 [3] : RXOIS (0): Receive FIFO overflow interrupt status
// 0x00000004 [2] : RXUIS (0): Receive FIFO underflow interrupt status
// 0x00000002 [1] : TXOIS (0): Transmit FIFO overflow interrupt status
// 0x00000001 [0] : TXEIS (0): Transmit FIFO empty interrupt status
io_ro_32 isr;
_REG_(SSI_RISR_OFFSET) // SSI_RISR
// Raw interrupt status
// 0x00000020 [5] : MSTIR (0): Multi-master contention raw interrupt status
// 0x00000010 [4] : RXFIR (0): Receive FIFO full raw interrupt status
// 0x00000008 [3] : RXOIR (0): Receive FIFO overflow raw interrupt status
// 0x00000004 [2] : RXUIR (0): Receive FIFO underflow raw interrupt status
// 0x00000002 [1] : TXOIR (0): Transmit FIFO overflow raw interrupt status
// 0x00000001 [0] : TXEIR (0): Transmit FIFO empty raw interrupt status
io_ro_32 risr;
_REG_(SSI_TXOICR_OFFSET) // SSI_TXOICR
// TX FIFO overflow interrupt clear
// 0x00000001 [0] : TXOICR (0): Clear-on-read transmit FIFO overflow interrupt
io_ro_32 txoicr;
_REG_(SSI_RXOICR_OFFSET) // SSI_RXOICR
// RX FIFO overflow interrupt clear
// 0x00000001 [0] : RXOICR (0): Clear-on-read receive FIFO overflow interrupt
io_ro_32 rxoicr;
_REG_(SSI_RXUICR_OFFSET) // SSI_RXUICR
// RX FIFO underflow interrupt clear
// 0x00000001 [0] : RXUICR (0): Clear-on-read receive FIFO underflow interrupt
io_ro_32 rxuicr;
_REG_(SSI_MSTICR_OFFSET) // SSI_MSTICR
// Multi-master interrupt clear
// 0x00000001 [0] : MSTICR (0): Clear-on-read multi-master contention interrupt
io_ro_32 msticr;
_REG_(SSI_ICR_OFFSET) // SSI_ICR
// Interrupt clear
// 0x00000001 [0] : ICR (0): Clear-on-read all active interrupts
io_ro_32 icr;
_REG_(SSI_DMACR_OFFSET) // SSI_DMACR
// DMA control
// 0x00000002 [1] : TDMAE (0): Transmit DMA enable
// 0x00000001 [0] : RDMAE (0): Receive DMA enable
io_rw_32 dmacr;
_REG_(SSI_DMATDLR_OFFSET) // SSI_DMATDLR
// DMA TX data level
// 0x000000ff [7:0] : DMATDL (0): Transmit data watermark level
io_rw_32 dmatdlr;
_REG_(SSI_DMARDLR_OFFSET) // SSI_DMARDLR
// DMA RX data level
// 0x000000ff [7:0] : DMARDL (0): Receive data watermark level (DMARDLR+1)
io_rw_32 dmardlr;
io_rw_32 idr;
io_rw_32 ssi_version_id;
_REG_(SSI_IDR_OFFSET) // SSI_IDR
// Identification register
// 0xffffffff [31:0] : IDCODE (0x51535049): Peripheral dentification code
io_ro_32 idr;
_REG_(SSI_SSI_VERSION_ID_OFFSET) // SSI_SSI_VERSION_ID
// Version ID
// 0xffffffff [31:0] : SSI_COMP_VERSION (0x3430312a): SNPS component version (format X
io_ro_32 ssi_version_id;
_REG_(SSI_DR0_OFFSET) // SSI_DR0
// Data Register 0 (of 36)
// 0xffffffff [31:0] : DR (0): First data register of 36
io_rw_32 dr0;
uint32_t _pad[(0xf0 - 0x60) / 4 - 1];
uint32_t _pad0[35];
_REG_(SSI_RX_SAMPLE_DLY_OFFSET) // SSI_RX_SAMPLE_DLY
// RX sample delay
// 0x000000ff [7:0] : RSD (0): RXD sample delay (in SCLK cycles)
io_rw_32 rx_sample_dly;
_REG_(SSI_SPI_CTRLR0_OFFSET) // SSI_SPI_CTRLR0
// SPI control
// 0xff000000 [31:24] : XIP_CMD (0x3): SPI Command to send in XIP mode (INST_L = 8-bit) or to append to Address (INST_L = 0-bit)
// 0x00040000 [18] : SPI_RXDS_EN (0): Read data strobe enable
// 0x00020000 [17] : INST_DDR_EN (0): Instruction DDR transfer enable
// 0x00010000 [16] : SPI_DDR_EN (0): SPI DDR transfer enable
// 0x0000f800 [15:11] : WAIT_CYCLES (0): Wait cycles between control frame transmit and data reception (in SCLK cycles)
// 0x00000300 [9:8] : INST_L (0): Instruction length (0/4/8/16b)
// 0x0000003c [5:2] : ADDR_L (0): Address length (0b-60b in 4b increments)
// 0x00000003 [1:0] : TRANS_TYPE (0): Address and instruction transfer format
io_rw_32 spi_ctrlr0;
_REG_(SSI_TXD_DRIVE_EDGE_OFFSET) // SSI_TXD_DRIVE_EDGE
// TX drive edge
// 0x000000ff [7:0] : TDE (0): TXD drive edge
io_rw_32 txd_drive_edge;
} ssi_hw_t;
#define ssi_hw ((ssi_hw_t *const)XIP_SSI_BASE)
#endif

View File

@ -1,5 +1,7 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
* Copyright (c) 2021 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
@ -8,16 +10,65 @@
#define _HARDWARE_STRUCTS_SYSCFG_H
#include "hardware/address_mapped.h"
#include "hardware/platform_defs.h"
#include "hardware/regs/syscfg.h"
// Reference to datasheet: https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf#tab-registerlist_syscfg
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/syscfg.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE]: FIELDNAME (RESETVALUE): DESCRIPTION
typedef struct {
_REG_(SYSCFG_PROC0_NMI_MASK_OFFSET) // SYSCFG_PROC0_NMI_MASK
// Processor core 0 NMI source mask
io_rw_32 proc0_nmi_mask;
_REG_(SYSCFG_PROC1_NMI_MASK_OFFSET) // SYSCFG_PROC1_NMI_MASK
// Processor core 1 NMI source mask
io_rw_32 proc1_nmi_mask;
_REG_(SYSCFG_PROC_CONFIG_OFFSET) // SYSCFG_PROC_CONFIG
// Configuration for processors
// 0xf0000000 [31:28] : PROC1_DAP_INSTID (1): Configure proc1 DAP instance ID
// 0x0f000000 [27:24] : PROC0_DAP_INSTID (0): Configure proc0 DAP instance ID
// 0x00000002 [1] : PROC1_HALTED (0): Indication that proc1 has halted
// 0x00000001 [0] : PROC0_HALTED (0): Indication that proc0 has halted
io_rw_32 proc_config;
_REG_(SYSCFG_PROC_IN_SYNC_BYPASS_OFFSET) // SYSCFG_PROC_IN_SYNC_BYPASS
// For each bit, if 1, bypass the input synchronizer between that GPIO
// 0x3fffffff [29:0] : PROC_IN_SYNC_BYPASS (0)
io_rw_32 proc_in_sync_bypass;
_REG_(SYSCFG_PROC_IN_SYNC_BYPASS_HI_OFFSET) // SYSCFG_PROC_IN_SYNC_BYPASS_HI
// For each bit, if 1, bypass the input synchronizer between that GPIO
// 0x0000003f [5:0] : PROC_IN_SYNC_BYPASS_HI (0)
io_rw_32 proc_in_sync_bypass_hi;
_REG_(SYSCFG_DBGFORCE_OFFSET) // SYSCFG_DBGFORCE
// Directly control the SWD debug port of either processor
// 0x00000080 [7] : PROC1_ATTACH (0): Attach processor 1 debug port to syscfg controls, and disconnect it from...
// 0x00000040 [6] : PROC1_SWCLK (1): Directly drive processor 1 SWCLK, if PROC1_ATTACH is set
// 0x00000020 [5] : PROC1_SWDI (1): Directly drive processor 1 SWDIO input, if PROC1_ATTACH is set
// 0x00000010 [4] : PROC1_SWDO (0): Observe the value of processor 1 SWDIO output
// 0x00000008 [3] : PROC0_ATTACH (0): Attach processor 0 debug port to syscfg controls, and disconnect it from...
// 0x00000004 [2] : PROC0_SWCLK (1): Directly drive processor 0 SWCLK, if PROC0_ATTACH is set
// 0x00000002 [1] : PROC0_SWDI (1): Directly drive processor 0 SWDIO input, if PROC0_ATTACH is set
// 0x00000001 [0] : PROC0_SWDO (0): Observe the value of processor 0 SWDIO output
io_rw_32 dbgforce;
_REG_(SYSCFG_MEMPOWERDOWN_OFFSET) // SYSCFG_MEMPOWERDOWN
// Control power downs to memories
// 0x00000080 [7] : ROM (0)
// 0x00000040 [6] : USB (0)
// 0x00000020 [5] : SRAM5 (0)
// 0x00000010 [4] : SRAM4 (0)
// 0x00000008 [3] : SRAM3 (0)
// 0x00000004 [2] : SRAM2 (0)
// 0x00000002 [1] : SRAM1 (0)
// 0x00000001 [0] : SRAM0 (0)
io_rw_32 mempowerdown;
} syscfg_hw_t;

View File

@ -1,5 +1,7 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
* Copyright (c) 2021 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
@ -10,10 +12,38 @@
#include "hardware/address_mapped.h"
#include "hardware/regs/m0plus.h"
// Reference to datasheet: https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf#tab-registerlist_m0plus
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/m0plus.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE]: FIELDNAME (RESETVALUE): DESCRIPTION
typedef struct {
_REG_(M0PLUS_SYST_CSR_OFFSET) // M0PLUS_SYST_CSR
// Use the SysTick Control and Status Register to enable the SysTick features
// 0x00010000 [16] : COUNTFLAG (0): Returns 1 if timer counted to 0 since last time this was read
// 0x00000004 [2] : CLKSOURCE (0): SysTick clock source
// 0x00000002 [1] : TICKINT (0): Enables SysTick exception request:
// 0x00000001 [0] : ENABLE (0): Enable SysTick counter:
io_rw_32 csr;
_REG_(M0PLUS_SYST_RVR_OFFSET) // M0PLUS_SYST_RVR
// Use the SysTick Reload Value Register to specify the start value to load into the current value register when the...
// 0x00ffffff [23:0] : RELOAD (0): Value to load into the SysTick Current Value Register when the counter reaches 0
io_rw_32 rvr;
_REG_(M0PLUS_SYST_CVR_OFFSET) // M0PLUS_SYST_CVR
// Use the SysTick Current Value Register to find the current value in the register
// 0x00ffffff [23:0] : CURRENT (0): Reads return the current value of the SysTick counter
io_rw_32 cvr;
_REG_(M0PLUS_SYST_CALIB_OFFSET) // M0PLUS_SYST_CALIB
// Use the SysTick Calibration Value Register to enable software to scale to any required speed using divide and multiply
// 0x80000000 [31] : NOREF (0): If reads as 1, the Reference clock is not provided - the CLKSOURCE bit of the...
// 0x40000000 [30] : SKEW (0): If reads as 1, the calibration value for 10ms is inexact (due to clock frequency)
// 0x00ffffff [23:0] : TENMS (0): An optional Reload value to be used for 10ms (100Hz) timing, subject to system clock...
io_ro_32 calib;
} systick_hw_t;

View File

@ -1,5 +1,7 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
* Copyright (c) 2021 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
@ -8,28 +10,95 @@
#define _HARDWARE_STRUCTS_TIMER_H
#include "hardware/address_mapped.h"
#include "hardware/platform_defs.h"
#include "hardware/regs/timer.h"
#define NUM_TIMERS 4
// Reference to datasheet: https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf#tab-registerlist_timer
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/timer.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE]: FIELDNAME (RESETVALUE): DESCRIPTION
typedef struct {
_REG_(TIMER_TIMEHW_OFFSET) // TIMER_TIMEHW
// Write to bits 63:32 of time
io_wo_32 timehw;
_REG_(TIMER_TIMELW_OFFSET) // TIMER_TIMELW
// Write to bits 31:0 of time
io_wo_32 timelw;
_REG_(TIMER_TIMEHR_OFFSET) // TIMER_TIMEHR
// Read from bits 63:32 of time
io_ro_32 timehr;
_REG_(TIMER_TIMELR_OFFSET) // TIMER_TIMELR
// Read from bits 31:0 of time
io_ro_32 timelr;
io_rw_32 alarm[NUM_TIMERS];
_REG_(TIMER_ALARM0_OFFSET) // TIMER_ALARM0
io_rw_32 alarm[NUM_TIMERS]; // 4
_REG_(TIMER_ARMED_OFFSET) // TIMER_ARMED
// Indicates the armed/disarmed status of each alarm
// 0x0000000f [3:0] : ARMED (0)
io_rw_32 armed;
_REG_(TIMER_TIMERAWH_OFFSET) // TIMER_TIMERAWH
// Raw read from bits 63:32 of time (no side effects)
io_ro_32 timerawh;
_REG_(TIMER_TIMERAWL_OFFSET) // TIMER_TIMERAWL
// Raw read from bits 31:0 of time (no side effects)
io_ro_32 timerawl;
_REG_(TIMER_DBGPAUSE_OFFSET) // TIMER_DBGPAUSE
// Set bits high to enable pause when the corresponding debug ports are active
// 0x00000004 [2] : DBG1 (1): Pause when processor 1 is in debug mode
// 0x00000002 [1] : DBG0 (1): Pause when processor 0 is in debug mode
io_rw_32 dbgpause;
_REG_(TIMER_PAUSE_OFFSET) // TIMER_PAUSE
// Set high to pause the timer
// 0x00000001 [0] : PAUSE (0)
io_rw_32 pause;
_REG_(TIMER_INTR_OFFSET) // TIMER_INTR
// Raw Interrupts
// 0x00000008 [3] : ALARM_3 (0)
// 0x00000004 [2] : ALARM_2 (0)
// 0x00000002 [1] : ALARM_1 (0)
// 0x00000001 [0] : ALARM_0 (0)
io_rw_32 intr;
_REG_(TIMER_INTE_OFFSET) // TIMER_INTE
// Interrupt Enable
// 0x00000008 [3] : ALARM_3 (0)
// 0x00000004 [2] : ALARM_2 (0)
// 0x00000002 [1] : ALARM_1 (0)
// 0x00000001 [0] : ALARM_0 (0)
io_rw_32 inte;
_REG_(TIMER_INTF_OFFSET) // TIMER_INTF
// Interrupt Force
// 0x00000008 [3] : ALARM_3 (0)
// 0x00000004 [2] : ALARM_2 (0)
// 0x00000002 [1] : ALARM_1 (0)
// 0x00000001 [0] : ALARM_0 (0)
io_rw_32 intf;
_REG_(TIMER_INTS_OFFSET) // TIMER_INTS
// Interrupt status after masking & forcing
// 0x00000008 [3] : ALARM_3 (0)
// 0x00000004 [2] : ALARM_2 (0)
// 0x00000002 [1] : ALARM_1 (0)
// 0x00000001 [0] : ALARM_0 (0)
io_ro_32 ints;
} timer_hw_t;
#define timer_hw ((timer_hw_t *const)TIMER_BASE)
static_assert( NUM_TIMERS == 4, "");
#endif

View File

@ -1,5 +1,7 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
* Copyright (c) 2021 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
@ -10,22 +12,162 @@
#include "hardware/address_mapped.h"
#include "hardware/regs/uart.h"
// Reference to datasheet: https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf#tab-registerlist_uart
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/uart.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE]: FIELDNAME (RESETVALUE): DESCRIPTION
typedef struct {
_REG_(UART_UARTDR_OFFSET) // UART_UARTDR
// Data Register, UARTDR
// 0x00000800 [11] : OE (0): Overrun error
// 0x00000400 [10] : BE (0): Break error
// 0x00000200 [9] : PE (0): Parity error
// 0x00000100 [8] : FE (0): Framing error
// 0x000000ff [7:0] : DATA (0): Receive (read) data character
io_rw_32 dr;
_REG_(UART_UARTRSR_OFFSET) // UART_UARTRSR
// Receive Status Register/Error Clear Register, UARTRSR/UARTECR
// 0x00000008 [3] : OE (0): Overrun error
// 0x00000004 [2] : BE (0): Break error
// 0x00000002 [1] : PE (0): Parity error
// 0x00000001 [0] : FE (0): Framing error
io_rw_32 rsr;
uint32_t _pad0[4];
io_rw_32 fr;
_REG_(UART_UARTFR_OFFSET) // UART_UARTFR
// Flag Register, UARTFR
// 0x00000100 [8] : RI (0): Ring indicator
// 0x00000080 [7] : TXFE (1): Transmit FIFO empty
// 0x00000040 [6] : RXFF (0): Receive FIFO full
// 0x00000020 [5] : TXFF (0): Transmit FIFO full
// 0x00000010 [4] : RXFE (1): Receive FIFO empty
// 0x00000008 [3] : BUSY (0): UART busy
// 0x00000004 [2] : DCD (0): Data carrier detect
// 0x00000002 [1] : DSR (0): Data set ready
// 0x00000001 [0] : CTS (0): Clear to send
io_ro_32 fr;
uint32_t _pad1;
_REG_(UART_UARTILPR_OFFSET) // UART_UARTILPR
// IrDA Low-Power Counter Register, UARTILPR
// 0x000000ff [7:0] : ILPDVSR (0): 8-bit low-power divisor value
io_rw_32 ilpr;
_REG_(UART_UARTIBRD_OFFSET) // UART_UARTIBRD
// Integer Baud Rate Register, UARTIBRD
// 0x0000ffff [15:0] : BAUD_DIVINT (0): The integer baud rate divisor
io_rw_32 ibrd;
_REG_(UART_UARTFBRD_OFFSET) // UART_UARTFBRD
// Fractional Baud Rate Register, UARTFBRD
// 0x0000003f [5:0] : BAUD_DIVFRAC (0): The fractional baud rate divisor
io_rw_32 fbrd;
_REG_(UART_UARTLCR_H_OFFSET) // UART_UARTLCR_H
// Line Control Register, UARTLCR_H
// 0x00000080 [7] : SPS (0): Stick parity select
// 0x00000060 [6:5] : WLEN (0): Word length
// 0x00000010 [4] : FEN (0): Enable FIFOs: 0 = FIFOs are disabled (character mode) that is, the FIFOs become...
// 0x00000008 [3] : STP2 (0): Two stop bits select
// 0x00000004 [2] : EPS (0): Even parity select
// 0x00000002 [1] : PEN (0): Parity enable: 0 = parity is disabled and no parity bit added to the data frame 1 =...
// 0x00000001 [0] : BRK (0): Send break
io_rw_32 lcr_h;
_REG_(UART_UARTCR_OFFSET) // UART_UARTCR
// Control Register, UARTCR
// 0x00008000 [15] : CTSEN (0): CTS hardware flow control enable
// 0x00004000 [14] : RTSEN (0): RTS hardware flow control enable
// 0x00002000 [13] : OUT2 (0): This bit is the complement of the UART Out2 (nUARTOut2) modem status output
// 0x00001000 [12] : OUT1 (0): This bit is the complement of the UART Out1 (nUARTOut1) modem status output
// 0x00000800 [11] : RTS (0): Request to send
// 0x00000400 [10] : DTR (0): Data transmit ready
// 0x00000200 [9] : RXE (1): Receive enable
// 0x00000100 [8] : TXE (1): Transmit enable
// 0x00000080 [7] : LBE (0): Loopback enable
// 0x00000004 [2] : SIRLP (0): SIR low-power IrDA mode
// 0x00000002 [1] : SIREN (0): SIR enable: 0 = IrDA SIR ENDEC is disabled
// 0x00000001 [0] : UARTEN (0): UART enable: 0 = UART is disabled
io_rw_32 cr;
_REG_(UART_UARTIFLS_OFFSET) // UART_UARTIFLS
// Interrupt FIFO Level Select Register, UARTIFLS
// 0x00000038 [5:3] : RXIFLSEL (0x2): Receive interrupt FIFO level select
// 0x00000007 [2:0] : TXIFLSEL (0x2): Transmit interrupt FIFO level select
io_rw_32 ifls;
_REG_(UART_UARTIMSC_OFFSET) // UART_UARTIMSC
// Interrupt Mask Set/Clear Register, UARTIMSC
// 0x00000400 [10] : OEIM (0): Overrun error interrupt mask
// 0x00000200 [9] : BEIM (0): Break error interrupt mask
// 0x00000100 [8] : PEIM (0): Parity error interrupt mask
// 0x00000080 [7] : FEIM (0): Framing error interrupt mask
// 0x00000040 [6] : RTIM (0): Receive timeout interrupt mask
// 0x00000020 [5] : TXIM (0): Transmit interrupt mask
// 0x00000010 [4] : RXIM (0): Receive interrupt mask
// 0x00000008 [3] : DSRMIM (0): nUARTDSR modem interrupt mask
// 0x00000004 [2] : DCDMIM (0): nUARTDCD modem interrupt mask
// 0x00000002 [1] : CTSMIM (0): nUARTCTS modem interrupt mask
// 0x00000001 [0] : RIMIM (0): nUARTRI modem interrupt mask
io_rw_32 imsc;
io_rw_32 ris;
io_rw_32 mis;
_REG_(UART_UARTRIS_OFFSET) // UART_UARTRIS
// Raw Interrupt Status Register, UARTRIS
// 0x00000400 [10] : OERIS (0): Overrun error interrupt status
// 0x00000200 [9] : BERIS (0): Break error interrupt status
// 0x00000100 [8] : PERIS (0): Parity error interrupt status
// 0x00000080 [7] : FERIS (0): Framing error interrupt status
// 0x00000040 [6] : RTRIS (0): Receive timeout interrupt status
// 0x00000020 [5] : TXRIS (0): Transmit interrupt status
// 0x00000010 [4] : RXRIS (0): Receive interrupt status
// 0x00000008 [3] : DSRRMIS (0): nUARTDSR modem interrupt status
// 0x00000004 [2] : DCDRMIS (0): nUARTDCD modem interrupt status
// 0x00000002 [1] : CTSRMIS (0): nUARTCTS modem interrupt status
// 0x00000001 [0] : RIRMIS (0): nUARTRI modem interrupt status
io_ro_32 ris;
_REG_(UART_UARTMIS_OFFSET) // UART_UARTMIS
// Masked Interrupt Status Register, UARTMIS
// 0x00000400 [10] : OEMIS (0): Overrun error masked interrupt status
// 0x00000200 [9] : BEMIS (0): Break error masked interrupt status
// 0x00000100 [8] : PEMIS (0): Parity error masked interrupt status
// 0x00000080 [7] : FEMIS (0): Framing error masked interrupt status
// 0x00000040 [6] : RTMIS (0): Receive timeout masked interrupt status
// 0x00000020 [5] : TXMIS (0): Transmit masked interrupt status
// 0x00000010 [4] : RXMIS (0): Receive masked interrupt status
// 0x00000008 [3] : DSRMMIS (0): nUARTDSR modem masked interrupt status
// 0x00000004 [2] : DCDMMIS (0): nUARTDCD modem masked interrupt status
// 0x00000002 [1] : CTSMMIS (0): nUARTCTS modem masked interrupt status
// 0x00000001 [0] : RIMMIS (0): nUARTRI modem masked interrupt status
io_ro_32 mis;
_REG_(UART_UARTICR_OFFSET) // UART_UARTICR
// Interrupt Clear Register, UARTICR
// 0x00000400 [10] : OEIC (0): Overrun error interrupt clear
// 0x00000200 [9] : BEIC (0): Break error interrupt clear
// 0x00000100 [8] : PEIC (0): Parity error interrupt clear
// 0x00000080 [7] : FEIC (0): Framing error interrupt clear
// 0x00000040 [6] : RTIC (0): Receive timeout interrupt clear
// 0x00000020 [5] : TXIC (0): Transmit interrupt clear
// 0x00000010 [4] : RXIC (0): Receive interrupt clear
// 0x00000008 [3] : DSRMIC (0): nUARTDSR modem interrupt clear
// 0x00000004 [2] : DCDMIC (0): nUARTDCD modem interrupt clear
// 0x00000002 [1] : CTSMIC (0): nUARTCTS modem interrupt clear
// 0x00000001 [0] : RIMIC (0): nUARTRI modem interrupt clear
io_rw_32 icr;
_REG_(UART_UARTDMACR_OFFSET) // UART_UARTDMACR
// DMA Control Register, UARTDMACR
// 0x00000004 [2] : DMAONERR (0): DMA on error
// 0x00000002 [1] : TXDMAE (0): Transmit DMA enable
// 0x00000001 [0] : RXDMAE (0): Receive DMA enable
io_rw_32 dmacr;
} uart_hw_t;

View File

@ -1,5 +1,7 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
* Copyright (c) 2021 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
@ -10,6 +12,14 @@
#include "hardware/address_mapped.h"
#include "hardware/regs/usb.h"
// Reference to datasheet: https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf#tab-registerlist_usb
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/usb.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE]: FIELDNAME (RESETVALUE): DESCRIPTION
// 0-15
#define USB_NUM_ENDPOINTS 16
@ -112,38 +122,450 @@ static_assert(sizeof(usb_host_dpram_t) == USB_DPRAM_MAX, "");
static_assert(offsetof(usb_host_dpram_t, epx_data) == 0x180, "");
typedef struct {
_REG_(USB_ADDR_ENDP_OFFSET) // USB_ADDR_ENDP
// Device address and endpoint control
// 0x000f0000 [19:16] : ENDPOINT (0): Device endpoint to send data to
// 0x0000007f [6:0] : ADDRESS (0): In device mode, the address that the device should respond to
io_rw_32 dev_addr_ctrl;
io_rw_32 int_ep_addr_ctrl[USB_HOST_INTERRUPT_ENDPOINTS];
_REG_(USB_ADDR_ENDP1_OFFSET) // USB_ADDR_ENDP1
io_rw_32 int_ep_addr_ctrl[USB_HOST_INTERRUPT_ENDPOINTS]; // 15
_REG_(USB_MAIN_CTRL_OFFSET) // USB_MAIN_CTRL
// Main control register
// 0x80000000 [31] : SIM_TIMING (0): Reduced timings for simulation
// 0x00000002 [1] : HOST_NDEVICE (0): Device mode = 0, Host mode = 1
// 0x00000001 [0] : CONTROLLER_EN (0): Enable controller
io_rw_32 main_ctrl;
io_rw_32 sof_rw;
_REG_(USB_SOF_WR_OFFSET) // USB_SOF_WR
// Set the SOF (Start of Frame) frame number in the host controller
// 0x000007ff [10:0] : COUNT (0)
io_wo_32 sof_rw;
_REG_(USB_SOF_RD_OFFSET) // USB_SOF_RD
// Read the last SOF (Start of Frame) frame number seen
// 0x000007ff [10:0] : COUNT (0)
io_ro_32 sof_rd;
_REG_(USB_SIE_CTRL_OFFSET) // USB_SIE_CTRL
// SIE control register
// 0x80000000 [31] : EP0_INT_STALL (0): Device: Set bit in EP_STATUS_STALL_NAK when EP0 sends a STALL
// 0x40000000 [30] : EP0_DOUBLE_BUF (0): Device: EP0 single buffered = 0, double buffered = 1
// 0x20000000 [29] : EP0_INT_1BUF (0): Device: Set bit in BUFF_STATUS for every buffer completed on EP0
// 0x10000000 [28] : EP0_INT_2BUF (0): Device: Set bit in BUFF_STATUS for every 2 buffers completed on EP0
// 0x08000000 [27] : EP0_INT_NAK (0): Device: Set bit in EP_STATUS_STALL_NAK when EP0 sends a NAK
// 0x04000000 [26] : DIRECT_EN (0): Direct bus drive enable
// 0x02000000 [25] : DIRECT_DP (0): Direct control of DP
// 0x01000000 [24] : DIRECT_DM (0): Direct control of DM
// 0x00040000 [18] : TRANSCEIVER_PD (0): Power down bus transceiver
// 0x00020000 [17] : RPU_OPT (0): Device: Pull-up strength (0=1K2, 1=2k3)
// 0x00010000 [16] : PULLUP_EN (0): Device: Enable pull up resistor
// 0x00008000 [15] : PULLDOWN_EN (0): Host: Enable pull down resistors
// 0x00002000 [13] : RESET_BUS (0): Host: Reset bus
// 0x00001000 [12] : RESUME (0): Device: Remote wakeup
// 0x00000800 [11] : VBUS_EN (0): Host: Enable VBUS
// 0x00000400 [10] : KEEP_ALIVE_EN (0): Host: Enable keep alive packet (for low speed bus)
// 0x00000200 [9] : SOF_EN (0): Host: Enable SOF generation (for full speed bus)
// 0x00000100 [8] : SOF_SYNC (0): Host: Delay packet(s) until after SOF
// 0x00000040 [6] : PREAMBLE_EN (0): Host: Preable enable for LS device on FS hub
// 0x00000010 [4] : STOP_TRANS (0): Host: Stop transaction
// 0x00000008 [3] : RECEIVE_DATA (0): Host: Receive transaction (IN to host)
// 0x00000004 [2] : SEND_DATA (0): Host: Send transaction (OUT from host)
// 0x00000002 [1] : SEND_SETUP (0): Host: Send Setup packet
// 0x00000001 [0] : START_TRANS (0): Host: Start transaction
io_rw_32 sie_ctrl;
_REG_(USB_SIE_STATUS_OFFSET) // USB_SIE_STATUS
// SIE status register
// 0x80000000 [31] : DATA_SEQ_ERROR (0): Data Sequence Error
// 0x40000000 [30] : ACK_REC (0): ACK received
// 0x20000000 [29] : STALL_REC (0): Host: STALL received
// 0x10000000 [28] : NAK_REC (0): Host: NAK received
// 0x08000000 [27] : RX_TIMEOUT (0): RX timeout is raised by both the host and device if an ACK is not received in...
// 0x04000000 [26] : RX_OVERFLOW (0): RX overflow is raised by the Serial RX engine if the incoming data is too fast
// 0x02000000 [25] : BIT_STUFF_ERROR (0): Bit Stuff Error
// 0x01000000 [24] : CRC_ERROR (0): CRC Error
// 0x00080000 [19] : BUS_RESET (0): Device: bus reset received
// 0x00040000 [18] : TRANS_COMPLETE (0): Transaction complete
// 0x00020000 [17] : SETUP_REC (0): Device: Setup packet received
// 0x00010000 [16] : CONNECTED (0): Device: connected
// 0x00000800 [11] : RESUME (0): Host: Device has initiated a remote resume
// 0x00000400 [10] : VBUS_OVER_CURR (0): VBUS over current detected
// 0x00000300 [9:8] : SPEED (0): Host: device speed
// 0x00000010 [4] : SUSPENDED (0): Bus in suspended state
// 0x0000000c [3:2] : LINE_STATE (0): USB bus line state
// 0x00000001 [0] : VBUS_DETECTED (0): Device: VBUS Detected
io_rw_32 sie_status;
_REG_(USB_INT_EP_CTRL_OFFSET) // USB_INT_EP_CTRL
// interrupt endpoint control register
// 0x0000fffe [15:1] : INT_EP_ACTIVE (0): Host: Enable interrupt endpoint 1 -> 15
io_rw_32 int_ep_ctrl;
_REG_(USB_BUFF_STATUS_OFFSET) // USB_BUFF_STATUS
// Buffer status register
// 0x80000000 [31] : EP15_OUT (0)
// 0x40000000 [30] : EP15_IN (0)
// 0x20000000 [29] : EP14_OUT (0)
// 0x10000000 [28] : EP14_IN (0)
// 0x08000000 [27] : EP13_OUT (0)
// 0x04000000 [26] : EP13_IN (0)
// 0x02000000 [25] : EP12_OUT (0)
// 0x01000000 [24] : EP12_IN (0)
// 0x00800000 [23] : EP11_OUT (0)
// 0x00400000 [22] : EP11_IN (0)
// 0x00200000 [21] : EP10_OUT (0)
// 0x00100000 [20] : EP10_IN (0)
// 0x00080000 [19] : EP9_OUT (0)
// 0x00040000 [18] : EP9_IN (0)
// 0x00020000 [17] : EP8_OUT (0)
// 0x00010000 [16] : EP8_IN (0)
// 0x00008000 [15] : EP7_OUT (0)
// 0x00004000 [14] : EP7_IN (0)
// 0x00002000 [13] : EP6_OUT (0)
// 0x00001000 [12] : EP6_IN (0)
// 0x00000800 [11] : EP5_OUT (0)
// 0x00000400 [10] : EP5_IN (0)
// 0x00000200 [9] : EP4_OUT (0)
// 0x00000100 [8] : EP4_IN (0)
// 0x00000080 [7] : EP3_OUT (0)
// 0x00000040 [6] : EP3_IN (0)
// 0x00000020 [5] : EP2_OUT (0)
// 0x00000010 [4] : EP2_IN (0)
// 0x00000008 [3] : EP1_OUT (0)
// 0x00000004 [2] : EP1_IN (0)
// 0x00000002 [1] : EP0_OUT (0)
// 0x00000001 [0] : EP0_IN (0)
io_rw_32 buf_status;
io_rw_32 buf_cpu_should_handle; // for double buff
_REG_(USB_BUFF_CPU_SHOULD_HANDLE_OFFSET) // USB_BUFF_CPU_SHOULD_HANDLE
// Which of the double buffers should be handled
// 0x80000000 [31] : EP15_OUT (0)
// 0x40000000 [30] : EP15_IN (0)
// 0x20000000 [29] : EP14_OUT (0)
// 0x10000000 [28] : EP14_IN (0)
// 0x08000000 [27] : EP13_OUT (0)
// 0x04000000 [26] : EP13_IN (0)
// 0x02000000 [25] : EP12_OUT (0)
// 0x01000000 [24] : EP12_IN (0)
// 0x00800000 [23] : EP11_OUT (0)
// 0x00400000 [22] : EP11_IN (0)
// 0x00200000 [21] : EP10_OUT (0)
// 0x00100000 [20] : EP10_IN (0)
// 0x00080000 [19] : EP9_OUT (0)
// 0x00040000 [18] : EP9_IN (0)
// 0x00020000 [17] : EP8_OUT (0)
// 0x00010000 [16] : EP8_IN (0)
// 0x00008000 [15] : EP7_OUT (0)
// 0x00004000 [14] : EP7_IN (0)
// 0x00002000 [13] : EP6_OUT (0)
// 0x00001000 [12] : EP6_IN (0)
// 0x00000800 [11] : EP5_OUT (0)
// 0x00000400 [10] : EP5_IN (0)
// 0x00000200 [9] : EP4_OUT (0)
// 0x00000100 [8] : EP4_IN (0)
// 0x00000080 [7] : EP3_OUT (0)
// 0x00000040 [6] : EP3_IN (0)
// 0x00000020 [5] : EP2_OUT (0)
// 0x00000010 [4] : EP2_IN (0)
// 0x00000008 [3] : EP1_OUT (0)
// 0x00000004 [2] : EP1_IN (0)
// 0x00000002 [1] : EP0_OUT (0)
// 0x00000001 [0] : EP0_IN (0)
io_ro_32 buf_cpu_should_handle;
_REG_(USB_EP_ABORT_OFFSET) // USB_EP_ABORT
// Device only: Can be set to ignore the buffer control register for this endpoint in case you would like to revoke a buffer
// 0x80000000 [31] : EP15_OUT (0)
// 0x40000000 [30] : EP15_IN (0)
// 0x20000000 [29] : EP14_OUT (0)
// 0x10000000 [28] : EP14_IN (0)
// 0x08000000 [27] : EP13_OUT (0)
// 0x04000000 [26] : EP13_IN (0)
// 0x02000000 [25] : EP12_OUT (0)
// 0x01000000 [24] : EP12_IN (0)
// 0x00800000 [23] : EP11_OUT (0)
// 0x00400000 [22] : EP11_IN (0)
// 0x00200000 [21] : EP10_OUT (0)
// 0x00100000 [20] : EP10_IN (0)
// 0x00080000 [19] : EP9_OUT (0)
// 0x00040000 [18] : EP9_IN (0)
// 0x00020000 [17] : EP8_OUT (0)
// 0x00010000 [16] : EP8_IN (0)
// 0x00008000 [15] : EP7_OUT (0)
// 0x00004000 [14] : EP7_IN (0)
// 0x00002000 [13] : EP6_OUT (0)
// 0x00001000 [12] : EP6_IN (0)
// 0x00000800 [11] : EP5_OUT (0)
// 0x00000400 [10] : EP5_IN (0)
// 0x00000200 [9] : EP4_OUT (0)
// 0x00000100 [8] : EP4_IN (0)
// 0x00000080 [7] : EP3_OUT (0)
// 0x00000040 [6] : EP3_IN (0)
// 0x00000020 [5] : EP2_OUT (0)
// 0x00000010 [4] : EP2_IN (0)
// 0x00000008 [3] : EP1_OUT (0)
// 0x00000004 [2] : EP1_IN (0)
// 0x00000002 [1] : EP0_OUT (0)
// 0x00000001 [0] : EP0_IN (0)
io_rw_32 abort;
_REG_(USB_EP_ABORT_DONE_OFFSET) // USB_EP_ABORT_DONE
// Device only: Used in conjunction with `EP_ABORT`
// 0x80000000 [31] : EP15_OUT (0)
// 0x40000000 [30] : EP15_IN (0)
// 0x20000000 [29] : EP14_OUT (0)
// 0x10000000 [28] : EP14_IN (0)
// 0x08000000 [27] : EP13_OUT (0)
// 0x04000000 [26] : EP13_IN (0)
// 0x02000000 [25] : EP12_OUT (0)
// 0x01000000 [24] : EP12_IN (0)
// 0x00800000 [23] : EP11_OUT (0)
// 0x00400000 [22] : EP11_IN (0)
// 0x00200000 [21] : EP10_OUT (0)
// 0x00100000 [20] : EP10_IN (0)
// 0x00080000 [19] : EP9_OUT (0)
// 0x00040000 [18] : EP9_IN (0)
// 0x00020000 [17] : EP8_OUT (0)
// 0x00010000 [16] : EP8_IN (0)
// 0x00008000 [15] : EP7_OUT (0)
// 0x00004000 [14] : EP7_IN (0)
// 0x00002000 [13] : EP6_OUT (0)
// 0x00001000 [12] : EP6_IN (0)
// 0x00000800 [11] : EP5_OUT (0)
// 0x00000400 [10] : EP5_IN (0)
// 0x00000200 [9] : EP4_OUT (0)
// 0x00000100 [8] : EP4_IN (0)
// 0x00000080 [7] : EP3_OUT (0)
// 0x00000040 [6] : EP3_IN (0)
// 0x00000020 [5] : EP2_OUT (0)
// 0x00000010 [4] : EP2_IN (0)
// 0x00000008 [3] : EP1_OUT (0)
// 0x00000004 [2] : EP1_IN (0)
// 0x00000002 [1] : EP0_OUT (0)
// 0x00000001 [0] : EP0_IN (0)
io_rw_32 abort_done;
_REG_(USB_EP_STALL_ARM_OFFSET) // USB_EP_STALL_ARM
// Device: this bit must be set in conjunction with the `STALL` bit in the buffer control register to send a STALL on EP0
// 0x00000002 [1] : EP0_OUT (0)
// 0x00000001 [0] : EP0_IN (0)
io_rw_32 ep_stall_arm;
_REG_(USB_NAK_POLL_OFFSET) // USB_NAK_POLL
// Used by the host controller
// 0x03ff0000 [25:16] : DELAY_FS (0x10): NAK polling interval for a full speed device
// 0x000003ff [9:0] : DELAY_LS (0x10): NAK polling interval for a low speed device
io_rw_32 nak_poll;
_REG_(USB_EP_STATUS_STALL_NAK_OFFSET) // USB_EP_STATUS_STALL_NAK
// Device: bits are set when the `IRQ_ON_NAK` or `IRQ_ON_STALL` bits are set
// 0x80000000 [31] : EP15_OUT (0)
// 0x40000000 [30] : EP15_IN (0)
// 0x20000000 [29] : EP14_OUT (0)
// 0x10000000 [28] : EP14_IN (0)
// 0x08000000 [27] : EP13_OUT (0)
// 0x04000000 [26] : EP13_IN (0)
// 0x02000000 [25] : EP12_OUT (0)
// 0x01000000 [24] : EP12_IN (0)
// 0x00800000 [23] : EP11_OUT (0)
// 0x00400000 [22] : EP11_IN (0)
// 0x00200000 [21] : EP10_OUT (0)
// 0x00100000 [20] : EP10_IN (0)
// 0x00080000 [19] : EP9_OUT (0)
// 0x00040000 [18] : EP9_IN (0)
// 0x00020000 [17] : EP8_OUT (0)
// 0x00010000 [16] : EP8_IN (0)
// 0x00008000 [15] : EP7_OUT (0)
// 0x00004000 [14] : EP7_IN (0)
// 0x00002000 [13] : EP6_OUT (0)
// 0x00001000 [12] : EP6_IN (0)
// 0x00000800 [11] : EP5_OUT (0)
// 0x00000400 [10] : EP5_IN (0)
// 0x00000200 [9] : EP4_OUT (0)
// 0x00000100 [8] : EP4_IN (0)
// 0x00000080 [7] : EP3_OUT (0)
// 0x00000040 [6] : EP3_IN (0)
// 0x00000020 [5] : EP2_OUT (0)
// 0x00000010 [4] : EP2_IN (0)
// 0x00000008 [3] : EP1_OUT (0)
// 0x00000004 [2] : EP1_IN (0)
// 0x00000002 [1] : EP0_OUT (0)
// 0x00000001 [0] : EP0_IN (0)
io_rw_32 ep_nak_stall_status;
_REG_(USB_USB_MUXING_OFFSET) // USB_USB_MUXING
// Where to connect the USB controller
// 0x00000008 [3] : SOFTCON (0)
// 0x00000004 [2] : TO_DIGITAL_PAD (0)
// 0x00000002 [1] : TO_EXTPHY (0)
// 0x00000001 [0] : TO_PHY (0)
io_rw_32 muxing;
_REG_(USB_USB_PWR_OFFSET) // USB_USB_PWR
// Overrides for the power signals in the event that the VBUS signals are not hooked up to GPIO
// 0x00000020 [5] : OVERCURR_DETECT_EN (0)
// 0x00000010 [4] : OVERCURR_DETECT (0)
// 0x00000008 [3] : VBUS_DETECT_OVERRIDE_EN (0)
// 0x00000004 [2] : VBUS_DETECT (0)
// 0x00000002 [1] : VBUS_EN_OVERRIDE_EN (0)
// 0x00000001 [0] : VBUS_EN (0)
io_rw_32 pwr;
_REG_(USB_USBPHY_DIRECT_OFFSET) // USB_USBPHY_DIRECT
// This register allows for direct control of the USB phy
// 0x00400000 [22] : DM_OVV (0): DM over voltage
// 0x00200000 [21] : DP_OVV (0): DP over voltage
// 0x00100000 [20] : DM_OVCN (0): DM overcurrent
// 0x00080000 [19] : DP_OVCN (0): DP overcurrent
// 0x00040000 [18] : RX_DM (0): DPM pin state
// 0x00020000 [17] : RX_DP (0): DPP pin state
// 0x00010000 [16] : RX_DD (0): Differential RX
// 0x00008000 [15] : TX_DIFFMODE (0): TX_DIFFMODE=0: Single ended mode
// 0x00004000 [14] : TX_FSSLEW (0): TX_FSSLEW=0: Low speed slew rate
// 0x00002000 [13] : TX_PD (0): TX power down override (if override enable is set)
// 0x00001000 [12] : RX_PD (0): RX power down override (if override enable is set)
// 0x00000800 [11] : TX_DM (0): Output data
// 0x00000400 [10] : TX_DP (0): Output data
// 0x00000200 [9] : TX_DM_OE (0): Output enable
// 0x00000100 [8] : TX_DP_OE (0): Output enable
// 0x00000040 [6] : DM_PULLDN_EN (0): DM pull down enable
// 0x00000020 [5] : DM_PULLUP_EN (0): DM pull up enable
// 0x00000010 [4] : DM_PULLUP_HISEL (0): Enable the second DM pull up resistor
// 0x00000004 [2] : DP_PULLDN_EN (0): DP pull down enable
// 0x00000002 [1] : DP_PULLUP_EN (0): DP pull up enable
// 0x00000001 [0] : DP_PULLUP_HISEL (0): Enable the second DP pull up resistor
io_rw_32 phy_direct;
_REG_(USB_USBPHY_DIRECT_OVERRIDE_OFFSET) // USB_USBPHY_DIRECT_OVERRIDE
// Override enable for each control in usbphy_direct
// 0x00008000 [15] : TX_DIFFMODE_OVERRIDE_EN (0)
// 0x00001000 [12] : DM_PULLUP_OVERRIDE_EN (0)
// 0x00000800 [11] : TX_FSSLEW_OVERRIDE_EN (0)
// 0x00000400 [10] : TX_PD_OVERRIDE_EN (0)
// 0x00000200 [9] : RX_PD_OVERRIDE_EN (0)
// 0x00000100 [8] : TX_DM_OVERRIDE_EN (0)
// 0x00000080 [7] : TX_DP_OVERRIDE_EN (0)
// 0x00000040 [6] : TX_DM_OE_OVERRIDE_EN (0)
// 0x00000020 [5] : TX_DP_OE_OVERRIDE_EN (0)
// 0x00000010 [4] : DM_PULLDN_EN_OVERRIDE_EN (0)
// 0x00000008 [3] : DP_PULLDN_EN_OVERRIDE_EN (0)
// 0x00000004 [2] : DP_PULLUP_EN_OVERRIDE_EN (0)
// 0x00000002 [1] : DM_PULLUP_HISEL_OVERRIDE_EN (0)
// 0x00000001 [0] : DP_PULLUP_HISEL_OVERRIDE_EN (0)
io_rw_32 phy_direct_override;
_REG_(USB_USBPHY_TRIM_OFFSET) // USB_USBPHY_TRIM
// Used to adjust trim values of USB phy pull down resistors
// 0x00001f00 [12:8] : DM_PULLDN_TRIM (0x1f): Value to drive to USB PHY
// 0x0000001f [4:0] : DP_PULLDN_TRIM (0x1f): Value to drive to USB PHY
io_rw_32 phy_trim;
io_rw_32 linestate_tuning;
io_rw_32 intr;
uint32_t _pad0;
_REG_(USB_INTR_OFFSET) // USB_INTR
// Raw Interrupts
// 0x00080000 [19] : EP_STALL_NAK (0): Raised when any bit in EP_STATUS_STALL_NAK is set
// 0x00040000 [18] : ABORT_DONE (0): Raised when any bit in ABORT_DONE is set
// 0x00020000 [17] : DEV_SOF (0): Set every time the device receives a SOF (Start of Frame) packet
// 0x00010000 [16] : SETUP_REQ (0): Device
// 0x00008000 [15] : DEV_RESUME_FROM_HOST (0): Set when the device receives a resume from the host
// 0x00004000 [14] : DEV_SUSPEND (0): Set when the device suspend state changes
// 0x00002000 [13] : DEV_CONN_DIS (0): Set when the device connection state changes
// 0x00001000 [12] : BUS_RESET (0): Source: SIE_STATUS
// 0x00000800 [11] : VBUS_DETECT (0): Source: SIE_STATUS
// 0x00000400 [10] : STALL (0): Source: SIE_STATUS
// 0x00000200 [9] : ERROR_CRC (0): Source: SIE_STATUS
// 0x00000100 [8] : ERROR_BIT_STUFF (0): Source: SIE_STATUS
// 0x00000080 [7] : ERROR_RX_OVERFLOW (0): Source: SIE_STATUS
// 0x00000040 [6] : ERROR_RX_TIMEOUT (0): Source: SIE_STATUS
// 0x00000020 [5] : ERROR_DATA_SEQ (0): Source: SIE_STATUS
// 0x00000010 [4] : BUFF_STATUS (0): Raised when any bit in BUFF_STATUS is set
// 0x00000008 [3] : TRANS_COMPLETE (0): Raised every time SIE_STATUS
// 0x00000004 [2] : HOST_SOF (0): Host: raised every time the host sends a SOF (Start of Frame)
// 0x00000002 [1] : HOST_RESUME (0): Host: raised when a device wakes up the host
// 0x00000001 [0] : HOST_CONN_DIS (0): Host: raised when a device is connected or disconnected (i
io_ro_32 intr;
_REG_(USB_INTE_OFFSET) // USB_INTE
// Interrupt Enable
// 0x00080000 [19] : EP_STALL_NAK (0): Raised when any bit in EP_STATUS_STALL_NAK is set
// 0x00040000 [18] : ABORT_DONE (0): Raised when any bit in ABORT_DONE is set
// 0x00020000 [17] : DEV_SOF (0): Set every time the device receives a SOF (Start of Frame) packet
// 0x00010000 [16] : SETUP_REQ (0): Device
// 0x00008000 [15] : DEV_RESUME_FROM_HOST (0): Set when the device receives a resume from the host
// 0x00004000 [14] : DEV_SUSPEND (0): Set when the device suspend state changes
// 0x00002000 [13] : DEV_CONN_DIS (0): Set when the device connection state changes
// 0x00001000 [12] : BUS_RESET (0): Source: SIE_STATUS
// 0x00000800 [11] : VBUS_DETECT (0): Source: SIE_STATUS
// 0x00000400 [10] : STALL (0): Source: SIE_STATUS
// 0x00000200 [9] : ERROR_CRC (0): Source: SIE_STATUS
// 0x00000100 [8] : ERROR_BIT_STUFF (0): Source: SIE_STATUS
// 0x00000080 [7] : ERROR_RX_OVERFLOW (0): Source: SIE_STATUS
// 0x00000040 [6] : ERROR_RX_TIMEOUT (0): Source: SIE_STATUS
// 0x00000020 [5] : ERROR_DATA_SEQ (0): Source: SIE_STATUS
// 0x00000010 [4] : BUFF_STATUS (0): Raised when any bit in BUFF_STATUS is set
// 0x00000008 [3] : TRANS_COMPLETE (0): Raised every time SIE_STATUS
// 0x00000004 [2] : HOST_SOF (0): Host: raised every time the host sends a SOF (Start of Frame)
// 0x00000002 [1] : HOST_RESUME (0): Host: raised when a device wakes up the host
// 0x00000001 [0] : HOST_CONN_DIS (0): Host: raised when a device is connected or disconnected (i
io_rw_32 inte;
_REG_(USB_INTF_OFFSET) // USB_INTF
// Interrupt Force
// 0x00080000 [19] : EP_STALL_NAK (0): Raised when any bit in EP_STATUS_STALL_NAK is set
// 0x00040000 [18] : ABORT_DONE (0): Raised when any bit in ABORT_DONE is set
// 0x00020000 [17] : DEV_SOF (0): Set every time the device receives a SOF (Start of Frame) packet
// 0x00010000 [16] : SETUP_REQ (0): Device
// 0x00008000 [15] : DEV_RESUME_FROM_HOST (0): Set when the device receives a resume from the host
// 0x00004000 [14] : DEV_SUSPEND (0): Set when the device suspend state changes
// 0x00002000 [13] : DEV_CONN_DIS (0): Set when the device connection state changes
// 0x00001000 [12] : BUS_RESET (0): Source: SIE_STATUS
// 0x00000800 [11] : VBUS_DETECT (0): Source: SIE_STATUS
// 0x00000400 [10] : STALL (0): Source: SIE_STATUS
// 0x00000200 [9] : ERROR_CRC (0): Source: SIE_STATUS
// 0x00000100 [8] : ERROR_BIT_STUFF (0): Source: SIE_STATUS
// 0x00000080 [7] : ERROR_RX_OVERFLOW (0): Source: SIE_STATUS
// 0x00000040 [6] : ERROR_RX_TIMEOUT (0): Source: SIE_STATUS
// 0x00000020 [5] : ERROR_DATA_SEQ (0): Source: SIE_STATUS
// 0x00000010 [4] : BUFF_STATUS (0): Raised when any bit in BUFF_STATUS is set
// 0x00000008 [3] : TRANS_COMPLETE (0): Raised every time SIE_STATUS
// 0x00000004 [2] : HOST_SOF (0): Host: raised every time the host sends a SOF (Start of Frame)
// 0x00000002 [1] : HOST_RESUME (0): Host: raised when a device wakes up the host
// 0x00000001 [0] : HOST_CONN_DIS (0): Host: raised when a device is connected or disconnected (i
io_rw_32 intf;
io_rw_32 ints;
_REG_(USB_INTS_OFFSET) // USB_INTS
// Interrupt status after masking & forcing
// 0x00080000 [19] : EP_STALL_NAK (0): Raised when any bit in EP_STATUS_STALL_NAK is set
// 0x00040000 [18] : ABORT_DONE (0): Raised when any bit in ABORT_DONE is set
// 0x00020000 [17] : DEV_SOF (0): Set every time the device receives a SOF (Start of Frame) packet
// 0x00010000 [16] : SETUP_REQ (0): Device
// 0x00008000 [15] : DEV_RESUME_FROM_HOST (0): Set when the device receives a resume from the host
// 0x00004000 [14] : DEV_SUSPEND (0): Set when the device suspend state changes
// 0x00002000 [13] : DEV_CONN_DIS (0): Set when the device connection state changes
// 0x00001000 [12] : BUS_RESET (0): Source: SIE_STATUS
// 0x00000800 [11] : VBUS_DETECT (0): Source: SIE_STATUS
// 0x00000400 [10] : STALL (0): Source: SIE_STATUS
// 0x00000200 [9] : ERROR_CRC (0): Source: SIE_STATUS
// 0x00000100 [8] : ERROR_BIT_STUFF (0): Source: SIE_STATUS
// 0x00000080 [7] : ERROR_RX_OVERFLOW (0): Source: SIE_STATUS
// 0x00000040 [6] : ERROR_RX_TIMEOUT (0): Source: SIE_STATUS
// 0x00000020 [5] : ERROR_DATA_SEQ (0): Source: SIE_STATUS
// 0x00000010 [4] : BUFF_STATUS (0): Raised when any bit in BUFF_STATUS is set
// 0x00000008 [3] : TRANS_COMPLETE (0): Raised every time SIE_STATUS
// 0x00000004 [2] : HOST_SOF (0): Host: raised every time the host sends a SOF (Start of Frame)
// 0x00000002 [1] : HOST_RESUME (0): Host: raised when a device wakes up the host
// 0x00000001 [0] : HOST_CONN_DIS (0): Host: raised when a device is connected or disconnected (i
io_ro_32 ints;
} usb_hw_t;
check_hw_layout(usb_hw_t, ints, USB_INTS_OFFSET);
#define usb_hw ((usb_hw_t *)USBCTRL_REGS_BASE)
#define usb_hw ((usb_hw_t *const)USBCTRL_REGS_BASE)
#define usb_dpram ((usb_device_dpram_t *)USBCTRL_DPRAM_BASE)
#define usbh_dpram ((usb_host_dpram_t *)USBCTRL_DPRAM_BASE)
static_assert( USB_HOST_INTERRUPT_ENDPOINTS == 15, "");
#endif

View File

@ -1,5 +1,7 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
* Copyright (c) 2021 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
@ -8,12 +10,37 @@
#define _HARDWARE_STRUCTS_VREG_AND_CHIP_RESET_H
#include "hardware/address_mapped.h"
#include "hardware/platform_defs.h"
#include "hardware/regs/vreg_and_chip_reset.h"
// Reference to datasheet: https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf#tab-registerlist_vreg_and_chip_reset
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/vreg_and_chip_reset.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE]: FIELDNAME (RESETVALUE): DESCRIPTION
typedef struct {
_REG_(VREG_AND_CHIP_RESET_VREG_OFFSET) // VREG_AND_CHIP_RESET_VREG
// Voltage regulator control and status
// 0x00001000 [12] : ROK (0): regulation status
// 0x000000f0 [7:4] : VSEL (0xb): output voltage select
// 0x00000002 [1] : HIZ (0): high impedance mode select
// 0x00000001 [0] : EN (1): enable
io_rw_32 vreg;
_REG_(VREG_AND_CHIP_RESET_BOD_OFFSET) // VREG_AND_CHIP_RESET_BOD
// brown-out detection control
// 0x000000f0 [7:4] : VSEL (0x9): threshold select
// 0x00000001 [0] : EN (1): enable
io_rw_32 bod;
_REG_(VREG_AND_CHIP_RESET_CHIP_RESET_OFFSET) // VREG_AND_CHIP_RESET_CHIP_RESET
// Chip reset control and status
// 0x01000000 [24] : PSM_RESTART_FLAG (0): This is set by psm_restart from the debugger
// 0x00100000 [20] : HAD_PSM_RESTART (0): Last reset was from the debug port
// 0x00010000 [16] : HAD_RUN (0): Last reset was from the RUN pin
// 0x00000100 [8] : HAD_POR (0): Last reset was from the power-on reset or brown-out detection blocks
io_rw_32 chip_reset;
} vreg_and_chip_reset_hw_t;

View File

@ -1,5 +1,7 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
* Copyright (c) 2021 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
@ -8,14 +10,47 @@
#define _HARDWARE_STRUCTS_WATCHDOG_H
#include "hardware/address_mapped.h"
#include "hardware/platform_defs.h"
#include "hardware/regs/watchdog.h"
// Reference to datasheet: https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf#tab-registerlist_watchdog
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/watchdog.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE]: FIELDNAME (RESETVALUE): DESCRIPTION
typedef struct {
_REG_(WATCHDOG_CTRL_OFFSET) // WATCHDOG_CTRL
// Watchdog control
// 0x80000000 [31] : TRIGGER (0): Trigger a watchdog reset
// 0x40000000 [30] : ENABLE (0): When not enabled the watchdog timer is paused
// 0x04000000 [26] : PAUSE_DBG1 (1): Pause the watchdog timer when processor 1 is in debug mode
// 0x02000000 [25] : PAUSE_DBG0 (1): Pause the watchdog timer when processor 0 is in debug mode
// 0x01000000 [24] : PAUSE_JTAG (1): Pause the watchdog timer when JTAG is accessing the bus fabric
// 0x00ffffff [23:0] : TIME (0): Indicates the number of ticks / 2 (see errata RP2040-E1) before a watchdog reset will...
io_rw_32 ctrl;
_REG_(WATCHDOG_LOAD_OFFSET) // WATCHDOG_LOAD
// Load the watchdog timer
// 0x00ffffff [23:0] : LOAD (0)
io_wo_32 load;
_REG_(WATCHDOG_REASON_OFFSET) // WATCHDOG_REASON
// Logs the reason for the last reset
// 0x00000002 [1] : FORCE (0)
// 0x00000001 [0] : TIMER (0)
io_ro_32 reason;
_REG_(WATCHDOG_SCRATCH0_OFFSET) // WATCHDOG_SCRATCH0
io_rw_32 scratch[8];
_REG_(WATCHDOG_TICK_OFFSET) // WATCHDOG_TICK
// Controls the tick generator
// 0x000ff800 [19:11] : COUNT (0): Count down timer: the remaining number clk_tick cycles before the next tick is generated
// 0x00000400 [10] : RUNNING (0): Is the tick generator running?
// 0x00000200 [9] : ENABLE (1): start / stop tick generation
// 0x000001ff [8:0] : CYCLES (0): Total number of clk_tick cycles before the next tick
io_rw_32 tick;
} watchdog_hw_t;

View File

@ -1,29 +1,72 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
* Copyright (c) 2021 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_XIP_CTRL_H
#define _HARDWARE_STRUCTS_XIP_CTRL_H
#include "hardware/address_mapped.h"
#include "hardware/regs/xip.h"
typedef struct {
io_rw_32 ctrl;
io_rw_32 flush;
io_rw_32 stat;
io_rw_32 ctr_hit;
io_rw_32 ctr_acc;
io_rw_32 stream_addr;
io_rw_32 stream_ctr;
io_rw_32 stream_fifo;
} xip_ctrl_hw_t;
// Reference to datasheet: https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf#tab-registerlist_xip
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/xip.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE]: FIELDNAME (RESETVALUE): DESCRIPTION
#define XIP_STAT_FIFO_FULL 0x4u
#define XIP_STAT_FIFO_EMPTY 0x2u
#define XIP_STAT_FLUSH_RDY 0x1u
typedef struct {
_REG_(XIP_CTRL_OFFSET) // XIP_CTRL
// Cache control
// 0x00000008 [3] : POWER_DOWN (0): When 1, the cache memories are powered down
// 0x00000002 [1] : ERR_BADWRITE (1): When 1, writes to any alias other than 0x0 (caching, allocating)
// 0x00000001 [0] : EN (1): When 1, enable the cache
io_rw_32 ctrl;
_REG_(XIP_FLUSH_OFFSET) // XIP_FLUSH
// Cache Flush control
// 0x00000001 [0] : FLUSH (0): Write 1 to flush the cache
io_rw_32 flush;
_REG_(XIP_STAT_OFFSET) // XIP_STAT
// Cache Status
// 0x00000004 [2] : FIFO_FULL (0): When 1, indicates the XIP streaming FIFO is completely full
// 0x00000002 [1] : FIFO_EMPTY (1): When 1, indicates the XIP streaming FIFO is completely empty
// 0x00000001 [0] : FLUSH_READY (0): Reads as 0 while a cache flush is in progress, and 1 otherwise
io_ro_32 stat;
_REG_(XIP_CTR_HIT_OFFSET) // XIP_CTR_HIT
// Cache Hit counter
io_rw_32 ctr_hit;
_REG_(XIP_CTR_ACC_OFFSET) // XIP_CTR_ACC
// Cache Access counter
io_rw_32 ctr_acc;
_REG_(XIP_STREAM_ADDR_OFFSET) // XIP_STREAM_ADDR
// FIFO stream address
// 0xfffffffc [31:2] : STREAM_ADDR (0): The address of the next word to be streamed from flash to the streaming FIFO
io_rw_32 stream_addr;
_REG_(XIP_STREAM_CTR_OFFSET) // XIP_STREAM_CTR
// FIFO stream control
// 0x003fffff [21:0] : STREAM_CTR (0): Write a nonzero value to start a streaming read
io_rw_32 stream_ctr;
_REG_(XIP_STREAM_FIFO_OFFSET) // XIP_STREAM_FIFO
// FIFO stream data
io_ro_32 stream_fifo;
} xip_ctrl_hw_t;
#define xip_ctrl_hw ((xip_ctrl_hw_t *const)XIP_CTRL_BASE)
#define XIP_STAT_FIFO_FULL XIP_STAT_FIFO_FULL_BITS
#define XIP_STAT_FIFO_EMPTY XIP_STAT_FIFO_EMPTY_BITS
#define XIP_STAT_FLUSH_RDY XIP_STAT_FLUSH_READY_BITS
#endif

View File

@ -1,5 +1,7 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
* Copyright (c) 2021 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
@ -8,16 +10,47 @@
#define _HARDWARE_STRUCTS_XOSC_H
#include "hardware/address_mapped.h"
#include "hardware/platform_defs.h"
#include "hardware/regs/xosc.h"
// Reference to datasheet: https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf#tab-registerlist_xosc
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/xosc.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE]: FIELDNAME (RESETVALUE): DESCRIPTION
/// \tag::xosc_hw[]
typedef struct {
_REG_(XOSC_CTRL_OFFSET) // XOSC_CTRL
// Crystal Oscillator Control
// 0x00fff000 [23:12] : ENABLE (0): On power-up this field is initialised to DISABLE and the chip runs from the ROSC
// 0x00000fff [11:0] : FREQ_RANGE (0): Frequency range
io_rw_32 ctrl;
_REG_(XOSC_STATUS_OFFSET) // XOSC_STATUS
// Crystal Oscillator Status
// 0x80000000 [31] : STABLE (0): Oscillator is running and stable
// 0x01000000 [24] : BADWRITE (0): An invalid value has been written to CTRL_ENABLE or CTRL_FREQ_RANGE or DORMANT
// 0x00001000 [12] : ENABLED (0): Oscillator is enabled but not necessarily running and stable, resets to 0
// 0x00000003 [1:0] : FREQ_RANGE (0): The current frequency range setting, always reads 0
io_rw_32 status;
_REG_(XOSC_DORMANT_OFFSET) // XOSC_DORMANT
// Crystal Oscillator pause control
io_rw_32 dormant;
_REG_(XOSC_STARTUP_OFFSET) // XOSC_STARTUP
// Controls the startup delay
// 0x00100000 [20] : X4 (0): Multiplies the startup_delay by 4
// 0x00003fff [13:0] : DELAY (0xc4): in multiples of 256*xtal_period
io_rw_32 startup;
io_rw_32 _reserved[3];
uint32_t _pad0[3];
_REG_(XOSC_COUNT_OFFSET) // XOSC_COUNT
// A down counter running at the xosc frequency which counts to zero and stops
// 0x000000ff [7:0] : COUNT (0)
io_rw_32 count;
} xosc_hw_t;

View File

@ -73,6 +73,13 @@ typedef volatile uint8_t io_wo_8;
typedef volatile uint8_t *const ioptr;
typedef ioptr const const_ioptr;
// A non-functional (empty) helper macro to help IDEs follow links from the autogenerated
// hardware struct headers in hardware/structs/xxx.h to the raw register definitions
// in hardware/regs/xxx.h. A preprocessor define such as TIMER_TIMEHW_OFFSET (a timer register offset)
// is not generally clickable (in an IDE) if placed in a C comment, so _REG_(TIMER_TIMEHW_OFFSET) is
// included outside of a comment instead
#define _REG_(x)
// Helper method used by hw_alias macros to optionally check input validity
static __force_inline uint32_t hw_alias_check_addr(volatile void *addr) {
uint32_t rc = (uintptr_t)addr;

View File

@ -142,7 +142,7 @@ static void gpio_irq_handler(void) {
io_irq_ctrl_hw_t *irq_ctrl_base = get_core_num() ?
&iobank0_hw->proc1_irq_ctrl : &iobank0_hw->proc0_irq_ctrl;
for (uint gpio = 0; gpio < NUM_BANK0_GPIOS; gpio++) {
io_rw_32 *status_reg = &irq_ctrl_base->ints[gpio / 8];
io_ro_32 *status_reg = &irq_ctrl_base->ints[gpio / 8];
uint events = (*status_reg >> 4 * (gpio % 8)) & 0xf;
if (events) {
// TODO: If both cores care about this event then the second core won't get the irq?